cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 22, 15, 30, 42, 77, 42, 101, 56, 176, 176, 231, 135, 490, 490, 490, 792, 1002, 490, 1575, 627, 3010, 2436, 2436, 3718, 5604, 1958, 4565, 6842, 12310, 3718, 14883, 4565, 21637, 26015, 17977, 8349, 53174, 44583, 63261
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(10) = 11 partitions:
  1  11  21  211   32   321    43    5111      522      631
             1111  311  2211   421   32111     3222     3331
                        21111  4111  41111     4221     4321
                                     221111    22221    5311
                                     311111    32211    32221
                                     2111111   222111   33211
                                     11111111  2211111  43111
                                                        322111
                                                        331111
                                                        3211111
                                                        31111111
For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
		

Crossrefs

The Heinz numbers of these partitions are given by A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}]