cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330972 Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 60, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1440, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456, 3600
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782).

Examples

			Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:
  4    8      12     16       24       36       48         60
  2*2  2*4    2*6    2*8      3*8      4*9      6*8        2*30
       2*2*2  3*4    4*4      4*6      6*6      2*24       3*20
              2*2*3  2*2*4    2*12     2*18     3*16       4*15
                     2*2*2*2  2*2*6    3*12     4*12       5*12
                              2*3*4    2*2*9    2*3*8      6*10
                              2*2*2*3  2*3*6    2*4*6      2*5*6
                                       3*3*4    3*4*4      3*4*5
                                       2*2*3*3  2*2*12     2*2*15
                                                2*2*2*6    2*3*10
                                                2*2*3*4    2*2*3*5
                                                2*2*2*2*3
		

Crossrefs

All terms belong to A025487
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The least number with A045782(n) factorizations is A045783(n).
The least number with n factorizations is A330973(n).
The strict version is A330997.

Programs

  • Mathematica
    nn=1000;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[facs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]