A331039 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0
Examples
Array begins: ========================================================== n\k | 0 1 2 3 4 5 6 7 ----+----------------------------------------------------- 0 | 1 1 0 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 0 1 5 43 518 8186 163356 ... 3 | 1 0 0 5 175 9426 751365 84012191 ... 4 | 1 0 0 1 272 64453 23553340 13241130441 ... 5 | 1 0 0 0 205 248685 421934358 1176014951129 ... 6 | 1 0 0 0 80 620548 5055634889 69754280936418 ... 7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ... ... The A(2,3) = 5 matrices are: [1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0] [1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0] The corresponding set-systems are: {{1,2,3}, {1}, {2}, {3}}, {{1,2}, {1,3}, {2,3}}, {{1,2}, {1,3}, {2}, {3}}, {{1,2}, {1}, {2,3}, {3}}, {{1,3}, {1}, {2,3}, {2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
Comments