A331102 a(n) is the greatest prime number of the form n mod (2^k) for some k > 0, or 0 if no such prime number exists.
0, 0, 2, 3, 0, 5, 2, 7, 0, 0, 2, 11, 0, 13, 2, 7, 0, 17, 2, 19, 0, 5, 2, 23, 0, 0, 2, 11, 0, 29, 2, 31, 0, 0, 2, 3, 0, 37, 2, 7, 0, 41, 2, 43, 0, 13, 2, 47, 0, 17, 2, 19, 0, 53, 2, 23, 0, 0, 2, 59, 0, 61, 2, 31, 0, 0, 2, 67, 0, 5, 2, 71, 0, 73, 2, 11, 0, 13, 2
Offset: 0
Examples
For n = 45: - we have: k 45 mod (2^k) prime? -- ------------ ------ 1 1 no 2 1 no 3 5 yes 4 13 yes 5 13 yes >5 45 no - hence a(45) = 13.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8192
Crossrefs
Cf. A331097 (decimal analog).
Programs
-
PARI
a(n, base=2) = my (d=digits(n, base), s); for (k=1, #d, if (isprime(s=fromdigits(d[k..#d], base)), return (s))); 0
Formula
a(n) <= n with equality iff n = 0 or n is a prime number.
Comments