A331105 T(n,k) = -k*(k+1)/2 mod 2^n; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows.
0, 0, 1, 0, 3, 1, 2, 0, 7, 5, 2, 6, 1, 3, 4, 0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8, 0, 31, 29, 26, 22, 17, 11, 4, 28, 19, 9, 30, 18, 5, 23, 8, 24, 7, 21, 2, 14, 25, 3, 12, 20, 27, 1, 6, 10, 13, 15, 16, 0, 63, 61, 58, 54, 49, 43, 36, 28, 19, 9
Offset: 0
Examples
Triangle T(n,k) begins: 0; 0, 1; 0, 3, 1, 2; 0, 7, 5, 2, 6, 1, 3, 4; 0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8; ...
Links
- Alois P. Heinz, Rows n = 0..15, flattened
Crossrefs
Programs
-
Maple
T:= n-> (p-> seq(modp(-k*(k+1)/2, p), k=0..p-1))(2^n): seq(T(n), n=0..6); # second Maple program: T:= proc(n, k) option remember; `if`(k=0, 0, T(n, k-1)-k mod 2^n) end: seq(seq(T(n, k), k=0..2^n-1), n=0..6);
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, 0, Mod[T[n, k - 1] - k, 2^n]]; Table[Table[T[n, k], {k, 0, 2^n - 1}], {n, 0, 6}] // Flatten (* Jean-François Alcover, Mar 28 2022, after Alois P. Heinz *)
Comments