A331106 Number of plane trees of total weight n of combinatorial class T=Z*U + Z*T^2/(1-T) with nodes Z of weight one and leaves U of weight three.
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 5, 5, 0, 1, 9, 21, 14, 1, 14, 56, 84, 43, 20, 120, 300, 331, 159, 225, 825, 1486, 1322, 814, 1925, 5006, 7051, 5621, 5434, 14015, 28082, 32968, 27092, 39261, 91793, 149877, 156858, 152023, 276769, 558845, 778920, 786931, 953756
Offset: 1
Keywords
Examples
For n=4, the tree is Z-U, for n=9 the tree is Z-U / Z \ Z-U.
References
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
Links
- Marko Riedel et al., Math.StackExchange, Counting plane trees
Crossrefs
Cf. A308616.
Formula
G.f.: (1 + z^4 - sqrt(z^8 - 4*z^5 - 2*z^4 +1))/(2*(z+1)).
a(n) = Sum_{k=floor(n/5)+1..floor((n-1)/4)} (1/(n-3*k)) * binomial(n-3*k,k) * binomial(k-2, n-4*k-1) for n >= 1, n <> 4. a(4) = 1.
D-finite with recurrence: n*a(n) +(n)*a(n-1) +(n-2)*a(n-2) +(n-2)*a(n-3) +2*(-n+6)*a(n-4) +6*(-n+7)*a(n-5) +2*(-3*n+23)*a(n-6) +6*(-n+9)*a(n-7) +(-3*n+26)*a(n-8) +(n-12)*a(n-9) +(n-14)*a(n-10) +(n-14)*a(n-11)=0. - R. J. Mathar, Jan 27 2020
Comments