cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331126 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.

Examples

			Array begins:
====================================================================
n\k | 0 1 2   3      4         5             6                 7
----+---------------------------------------------------------------
  0 | 1 1 0   0      0         0             0                 0 ...
  1 | 1 1 1   1      1         1             1                 1 ...
  2 | 1 1 2   9     70       794         12055            233238 ...
  3 | 1 1 3  29    666     28344       1935054         193926796 ...
  4 | 1 1 4  68   3642    469368     119843417       53059346010 ...
  5 | 1 1 5 134  14951   5289611    4681749424     8639480647842 ...
  6 | 1 1 6 237  50985  46241343  134332244907   989821806791367 ...
  7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
     ...
The A(2,2) = 2 matrices are:
   [1 1]   [1 0]
   [1 0]   [1 0]
   [0 1]   [0 1]
           [0 1]
The corresponding set multipartitions are:
    {{1,2}, {1}, {2}},
    {{1}, {1}, {2}, {2}}.
		

Crossrefs

Rows n=1..3 are A000012, A014500, A331389.
Columns k=0..3 are A000012, A000012, A001477, A331390.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188392(n, j) for n, k >= 1.
A331391(n) = Sum_{d|n} A(n/d, d).