A331126 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 6 7 ----+--------------------------------------------------------------- 0 | 1 1 0 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 2 9 70 794 12055 233238 ... 3 | 1 1 3 29 666 28344 1935054 193926796 ... 4 | 1 1 4 68 3642 469368 119843417 53059346010 ... 5 | 1 1 5 134 14951 5289611 4681749424 8639480647842 ... 6 | 1 1 6 237 50985 46241343 134332244907 989821806791367 ... 7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ... ... The A(2,2) = 2 matrices are: [1 1] [1 0] [1 0] [1 0] [0 1] [0 1] [0 1] The corresponding set multipartitions are: {{1,2}, {1}, {2}}, {{1}, {1}, {2}, {2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
Comments