cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A031361 Number of symmetrically inequivalent coincidence rotations of index n in lattice Z^4.

Original entry on oeis.org

1, 2, 16, 0, 36, 32, 64, 0, 168, 72, 144, 0, 196, 128, 576, 0, 324, 336, 400, 0, 1024, 288, 576, 0, 960, 392, 1584, 0, 900, 1152, 1024, 0, 2304, 648, 2304, 0, 1444, 800, 3136, 0, 1764, 2048, 1936, 0, 6048, 1152, 2304, 0, 3248, 1920, 5184, 0, 2916, 3168, 5184, 0
Offset: 1

Views

Author

Keywords

Comments

Dirichlet product of 1 + 2/2^s with Sum_{n>=1} A031360(n)/(2n-1)^s. - R. J. Mathar, Jul 16 2010
Some symmetrically distinct rotations generate the same coincidence site lattices, hence a(n) >= A331140(n). - Andrey Zabolotskiy, Jan 29 2020

Crossrefs

Programs

  • Maple
    read("transforms") : maxOrd := 120 :
    ZetaNum := proc(p,nmax,f) local n ; L := [1,seq(0,n=2..p-1),f,seq(0,n=p+1..nmax)] ; end proc:
    Zeta := proc(p,nmax,f) local L,e; L := [1,seq(0,n=2..nmax)] ; for e from 1 do if p^e > nmax then break; else L := subsop(p^e=f^e,L) ; end if; end do: L ; end proc:
    Zetap := ZetaNum(2,maxOrd,2): for e from 3 to maxOrd do if isprime(e) then ZetaNum(e,maxOrd,1) ; Zetap := DIRICHLET(Zetap,%) ; ZetaNum(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e^2) ; Zetap := DIRICHLET(Zetap,%) ; end if; end do: Zetap ;
    # R. J. Mathar, Jul 16 2010
  • Mathematica
    maxOrd = 120;
    did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
    DIRICHLET[a_List, b_List] := Module[{c = {}, i, s, d}, For[i = 1, i <= Min[Length[a], Length[b]], i++, s = 0; For[d = 1, d <= i, d++, If[did[i, d] == 1, s = s + a[[d]] b[[i/d]]]]; c = Append[c, s]]; c];
    zetaNum[p_, nmax_, f_] := Module[{n}, L = Join[{1}, Table[0, {n, 2, p-1}], {f}, Table[0, {n, p+1, nmax}]]];
    zeta[p_, nmax_, f_] := Module[{L, e}, L = Join[{1}, Table[0, {n, 2, nmax}] ]; For[e = 1, True, e++, If[p^e > nmax, Break[], L = ReplacePart[L, p^e -> f^e]]]; L];
    zetap = zetaNum[2, maxOrd, 2];
    For[e = 3, e <= maxOrd, e++, If[PrimeQ[e], ze = zetaNum[e, maxOrd, 1];
      zetap = DIRICHLET[zetap, ze]; ze = zetaNum[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e^2];
      zetap = DIRICHLET[zetap, ze]]];
    zetap (* Jean-François Alcover, Apr 20 2020, after R. J. Mathar *)

Formula

Dirichlet series: (1+2^(1-s))* Product (1+p^(-s))*(1+p^(1-s))/((1-p^(1-s))*(1-p^(2-s))); p != 2.
From Vaclav Kotesovec, Jul 18 2025: (Start)
Dirichlet g.f.: (2^s-4) * (2^s-2) * zeta(s-2) * zeta(s-1)^2 * zeta(s) / (2^s * (2^s+1) * zeta(2*s) * zeta(2*s-2)).
Sum_{k=1..n} a(k) ~ 525 * zeta(3) * n^3 / (2*Pi^6). (End)

Extensions

More terms from R. J. Mathar, Jul 16 2010
Typo in formula (exclamation mark for 1) corrected by R. J. Mathar, Jul 23 2010
Name corrected by Andrey Zabolotskiy, Jan 29 2020

A331139 Number of different coincidence site lattices of index 2n-1 in lattice D_4.

Original entry on oeis.org

1, 16, 36, 64, 152, 144, 196, 576, 324, 400, 1024, 576, 912, 1392, 900, 1024, 2304, 2304, 1444, 3136, 1764, 1936, 5472, 2304, 3152, 5184, 2916, 5184, 6400, 3600, 3844, 9728, 7056, 4624, 9216, 5184, 5476, 14592, 9216, 6400, 12552, 7056, 11664, 14400, 8100
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2020

Keywords

Comments

Differs from A031360 if n is divisible by the square of an odd prime.

Crossrefs

Extensions

Terms a(10) and beyond added and name corrected by Andrey Zabolotskiy, Jan 29 2020

A331141 Number of symmetrically inequivalent coincidence rotations of index n in lattice A_4.

Original entry on oeis.org

1, 5, 10, 20, 30, 50, 50, 80, 90, 150, 144, 200, 170, 250, 300, 320, 290, 450, 400, 600, 500, 720, 530, 800, 750, 850, 810, 1000, 900, 1500, 1024, 1280, 1440, 1450, 1500, 1800, 1370, 2000, 1700, 2400, 1764, 2500, 1850, 2880, 2700, 2650, 2210, 3200, 2450
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2020

Keywords

Comments

The overall number of coincidence rotations is 120 times higher. Some symmetrically distinct rotations generate the same coincidence site lattices, hence a(n) >= A331142(n). - Andrey Zabolotskiy, Jan 29 2020

Crossrefs

Extensions

Name corrected and terms a(12) and beyond added by Andrey Zabolotskiy, Jan 29 2020

A031358 Number of coincidence site lattices of index 4n+1 in lattice Z^2.

Original entry on oeis.org

1, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 4, 2, 0, 2, 0, 0, 2, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 4, 2, 0, 2, 2, 0, 2, 2, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 2, 4, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A175647, A031359, A331140, A106594, A094178 (positions of nonzero terms).

Programs

  • PARI
    t1=direuler(p=2,1200,(1+(p%4<2)*X))
    t2=direuler(p=2,1200,1/(1-(p%4<2)*X))
    t3=dirmul(t1,t2)
    t4=vector(200,n,t3[4*n+1]) \\ and then prepend 1

Formula

Dirichlet series: Product_{primes p == 1 mod 4} (1+p^(-s))/(1-p^(-s)).
a(n) = 2*A106594(n) for n > 0. - Andrey Zabolotskiy, Jan 30 2020

Extensions

More terms from N. J. A. Sloane, Mar 13 2009
Added condition that p must be prime to the Dirichlet series. - N. J. A. Sloane, May 26 2014
Offset corrected by Andrey Zabolotskiy, Jan 30 2020

A331142 Number of different coincidence site lattices of index n in lattice A_4.

Original entry on oeis.org

1, 5, 10, 20, 6, 50, 50, 80, 90, 30, 144, 200, 170, 250, 60, 320, 290, 450, 400, 120, 500, 720, 530, 800, 150, 850, 810, 1000, 900, 300, 1024, 1280, 1440, 1450, 300, 1800, 1370, 2000, 1700, 480, 1764, 2500, 1850, 2880, 540, 2650, 2210, 3200, 2450, 750, 2900
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2020

Keywords

Crossrefs

Extensions

Name corrected and terms a(12) and beyond added by Andrey Zabolotskiy, Jan 29 2020

A350872 Number of coincidence site lattices of index n in square lattice.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Andrey Zabolotskiy, Jan 20 2022

Keywords

Comments

A coincidence site lattice (CSL), or coincidence sublattice, is a full-rank sublattice arising as an intersection of the parent lattice with its copy rotated around the origin. It is necessarily primitive.
A primitive sublattice of the square lattice is a CSL if it is square (i. e., similar to the parent lattice) and has odd index.
In this sequence, any two CSLs differing by any isometry are counted as distinct.
a(n) is also the number of ordered pairs of coprime integers (p, q) with p >= 0 and q > 0 such that p^2 + q^2 = n^2.

Examples

			a(5) = 2 index-5 CSLs have bases (2, 1), (-1, 2) and (1, 2), (-2, 1).
		

Crossrefs

Cf. A031358 (nonzero quadrisection), A004613 (positions of nonzero terms), A024362, A154269, A338690, A271102.
Cf. enumeration of wider classes of sublattices of Z^2: A000203 (all sublattices), A350871 (all well-rounded sublattices), A002654 (all square sublattices), A001615 (all primitive sublattices), A000089 (all primitive square sublattices).
Cf. enumeration of CSLs in other lattices: A331140 (Z^4), A331139 (D_4), A331142 (A_4).

Programs

  • Mathematica
    csl[1] = 1;
    csl[n_] := With[{f = First@Transpose@FactorInteger@n}, If[Union@Mod[f, 4] == {1}, 2^Length@f, 0]];
    Array[csl, 87]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]%4 == 1, 2, 0));} \\ Amiram Eldar, Oct 23 2023

Formula

Multiplicative with a(p^e) = 2 if p == 1 (mod 4), otherwise 0.
a(4*n+1) = A031358(n), other terms are 0.
a(n) = 2 * A024362(n) for n > 1.
Dirichlet convolution of A000089 and A154269.
Dirichlet convolution of A338690 and A271102.
From Amiram Eldar, Oct 23 2023: (Start)
Dirichlet g.f.: Product_{primes p == 1 (mod 4)} (1 + 1/p^s)/(1 - 1/p^s).
Sum_{k=1..n} a(k) = (1/Pi) * n + O(sqrt(n)*log(n)).
(both from Baake and Zeiner, 2017) (End)
Showing 1-6 of 6 results.