cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A031361 Number of symmetrically inequivalent coincidence rotations of index n in lattice Z^4.

Original entry on oeis.org

1, 2, 16, 0, 36, 32, 64, 0, 168, 72, 144, 0, 196, 128, 576, 0, 324, 336, 400, 0, 1024, 288, 576, 0, 960, 392, 1584, 0, 900, 1152, 1024, 0, 2304, 648, 2304, 0, 1444, 800, 3136, 0, 1764, 2048, 1936, 0, 6048, 1152, 2304, 0, 3248, 1920, 5184, 0, 2916, 3168, 5184, 0
Offset: 1

Views

Author

Keywords

Comments

Dirichlet product of 1 + 2/2^s with Sum_{n>=1} A031360(n)/(2n-1)^s. - R. J. Mathar, Jul 16 2010
Some symmetrically distinct rotations generate the same coincidence site lattices, hence a(n) >= A331140(n). - Andrey Zabolotskiy, Jan 29 2020

Crossrefs

Programs

  • Maple
    read("transforms") : maxOrd := 120 :
    ZetaNum := proc(p,nmax,f) local n ; L := [1,seq(0,n=2..p-1),f,seq(0,n=p+1..nmax)] ; end proc:
    Zeta := proc(p,nmax,f) local L,e; L := [1,seq(0,n=2..nmax)] ; for e from 1 do if p^e > nmax then break; else L := subsop(p^e=f^e,L) ; end if; end do: L ; end proc:
    Zetap := ZetaNum(2,maxOrd,2): for e from 3 to maxOrd do if isprime(e) then ZetaNum(e,maxOrd,1) ; Zetap := DIRICHLET(Zetap,%) ; ZetaNum(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e^2) ; Zetap := DIRICHLET(Zetap,%) ; end if; end do: Zetap ;
    # R. J. Mathar, Jul 16 2010
  • Mathematica
    maxOrd = 120;
    did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
    DIRICHLET[a_List, b_List] := Module[{c = {}, i, s, d}, For[i = 1, i <= Min[Length[a], Length[b]], i++, s = 0; For[d = 1, d <= i, d++, If[did[i, d] == 1, s = s + a[[d]] b[[i/d]]]]; c = Append[c, s]]; c];
    zetaNum[p_, nmax_, f_] := Module[{n}, L = Join[{1}, Table[0, {n, 2, p-1}], {f}, Table[0, {n, p+1, nmax}]]];
    zeta[p_, nmax_, f_] := Module[{L, e}, L = Join[{1}, Table[0, {n, 2, nmax}] ]; For[e = 1, True, e++, If[p^e > nmax, Break[], L = ReplacePart[L, p^e -> f^e]]]; L];
    zetap = zetaNum[2, maxOrd, 2];
    For[e = 3, e <= maxOrd, e++, If[PrimeQ[e], ze = zetaNum[e, maxOrd, 1];
      zetap = DIRICHLET[zetap, ze]; ze = zetaNum[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e^2];
      zetap = DIRICHLET[zetap, ze]]];
    zetap (* Jean-François Alcover, Apr 20 2020, after R. J. Mathar *)

Formula

Dirichlet series: (1+2^(1-s))* Product (1+p^(-s))*(1+p^(1-s))/((1-p^(1-s))*(1-p^(2-s))); p != 2.
From Vaclav Kotesovec, Jul 18 2025: (Start)
Dirichlet g.f.: (2^s-4) * (2^s-2) * zeta(s-2) * zeta(s-1)^2 * zeta(s) / (2^s * (2^s+1) * zeta(2*s) * zeta(2*s-2)).
Sum_{k=1..n} a(k) ~ 525 * zeta(3) * n^3 / (2*Pi^6). (End)

Extensions

More terms from R. J. Mathar, Jul 16 2010
Typo in formula (exclamation mark for 1) corrected by R. J. Mathar, Jul 23 2010
Name corrected by Andrey Zabolotskiy, Jan 29 2020

A350871 Number of well-rounded sublattices of index n in square lattice.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 0, 4, 3, 2, 0, 0, 2, 2, 0, 1, 0, 2, 2, 1, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 4, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 8, 2, 0, 2, 1, 4, 0, 0, 2, 0, 2, 0, 1, 2, 2, 4, 0, 2, 0, 0, 6, 1, 2, 0, 2, 4, 0, 0
Offset: 1

Views

Author

Andrey Zabolotskiy, Jan 20 2022

Keywords

Comments

A sublattice is well-rounded if the linear span of its vectors of minimal length is the whole space.
A sublattice of the square lattice is well-rounded when it is square or centered rectangular (rhombic) with not too oblong unit cell: the angles of the rhombus should be at least Pi/3.
In this sequence, any two sublattices differing by any isometry are counted as distinct.

Examples

			a(4) = 1 well-rounded index-4 sublattice has basis (2, 0), (0, 2).
a(5) = 2 w.-r. index-5 sublattices have bases (2, 1), (-1, 2) and (1, 2), (-2, 1).
At index 12, for the first time centered rectangular sublattices occur, there are a(12) = 2 of them with the bases (3, 2), (3, -2) and (2, 3), (-2, 3).
		

Crossrefs

Cf. enumeration of other classes of sublattices of Z^2: A000203 (all sublattices), A002654 (square sublattices), A000089 (primitive square sublattices), A350872 (coincidence sublattices), A145393 (all sublattices up to isometries of the parent lattice).
Cf. A097584.

Programs

  • Mathematica
    fa[s_] := Count[Divisors[s], _?(#^2 < (s/#)^2 < 3 #^2 &)];
    f0[s_] := If[OddQ[s], 0, 2 fa[s/2]];
    f1[s_] := With[{e2 = IntegerExponent[s, 2]}, 2 (-1)^e2 fa[s/2^e2]];
    pr[s_] := Count[Range[s], _?(Mod[#^2 + 1, s] == 0 &)]; (*A000089*)
    sq[n_] := Sum[pr[n/d^2], {d, Select[Range[n], Mod[n, #^2] == 0 &]}]; (*A002654*)
    a[n_] := sq[n] + Sum[pr[n/d] (f0[d] + f1[d]), {d, Divisors[n]}];
    Array[a, 87]

Formula

See Zeiner (2015), Theorem 7.3.1. [Note that the formula from Baake & Zeiner (2017) contains an error.]
Showing 1-2 of 2 results.