A350872 Number of coincidence site lattices of index n in square lattice.
1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 1
Examples
a(5) = 2 index-5 CSLs have bases (2, 1), (-1, 2) and (1, 2), (-2, 1).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michael Baake and Peter Zeiner, Geometric enumeration problems for lattices and embedded Z-modules, arXiv:1709.07317 [math.MG], 2017; in: Aperiodic Order, vol. 2: Crystallography and Almost Periodicity, eds. M. Baake and U. Grimm, Cambridge University Press, Cambridge (2017), pp. 73-172.
- Index entries for sequences related to square lattice.
- Index entries for sequences related to sublattices.
Crossrefs
Cf. A031358 (nonzero quadrisection), A004613 (positions of nonzero terms), A024362, A154269, A338690, A271102.
Programs
-
Mathematica
csl[1] = 1; csl[n_] := With[{f = First@Transpose@FactorInteger@n}, If[Union@Mod[f, 4] == {1}, 2^Length@f, 0]]; Array[csl, 87]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]%4 == 1, 2, 0));} \\ Amiram Eldar, Oct 23 2023
Formula
Multiplicative with a(p^e) = 2 if p == 1 (mod 4), otherwise 0.
a(4*n+1) = A031358(n), other terms are 0.
a(n) = 2 * A024362(n) for n > 1.
From Amiram Eldar, Oct 23 2023: (Start)
Dirichlet g.f.: Product_{primes p == 1 (mod 4)} (1 + 1/p^s)/(1 - 1/p^s).
Sum_{k=1..n} a(k) = (1/Pi) * n + O(sqrt(n)*log(n)).
(both from Baake and Zeiner, 2017) (End)
Comments