cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331143 Number of coincidence site modules of icosian ring of index n.

Original entry on oeis.org

1, 0, 0, 25, 36, 0, 0, 0, 100, 0, 288, 0, 0, 0, 0, 410, 0, 0, 800, 900, 0, 0, 0, 0, 912, 0, 0, 0, 1800, 0, 2048, 0, 0, 0, 0, 2500, 0, 0, 0, 0, 3528, 0, 0, 7200, 3600, 0, 0, 0, 2500, 0, 0, 0, 0, 0, 10368, 0, 0, 0, 7200, 0, 7688, 0, 0, 6600, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2020

Keywords

Crossrefs

Cf. A031366.

Programs

  • Mathematica
    h[x_, 0] := 1;
    h[x_, r_] := (x^(2 r + 1) + x^(2 r - 2) - 2 x^Quotient[r - 1, 2] If[EvenQ[r], (1 + x^2)/(1 + x), 1]) (x + 1)^2/(x^3 - 1);
    apr[5, r_] := h[5, r];
    apr[p_?(Abs@Mod[#, 5, -1] == 1 &), r_] := Sum[h[p, r - s] h[p, s], {s, 0, r}];
    apr[p_, r_] := If[OddQ[r], 0, h[p^2, r/2]];
    a[1] = 1;
    a[n_] := Product[apr @@ pr, {pr, FactorInteger[n]}];
    Table[a[n], {n, 100}]
    (* Andrey Zabolotskiy, Feb 16 2021 *)

Formula

See Zeiner (2015) for the formula and the Dirichlet g.f. (but beware of the typo in the 19th term).

Extensions

New name, a(19) corrected, a(29) and beyond added by Andrey Zabolotskiy, Feb 16 2021