A331178 Number of values of k, 1 <= k <= n, with A023900(k) = A023900(n), where A023900 is Dirichlet inverse of Euler totient function phi.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 4, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 3, 2, 1, 2, 1, 5, 4, 2, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 2, 1, 2, 9, 1, 4, 2, 6, 1, 1, 1, 5, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1])); v331178 = ordinal_transform(vector(up_to, n, A023900(n))); A331178(n) = v331178[n];
Comments