A331179 Number of values of k, 1 <= k <= n, with A173557(k) = A173557(n), where A173557(n) = Product_{p-1 | p is prime and divisor of n}.
1, 2, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 5, 1, 5, 1, 3, 2, 2, 1, 6, 4, 3, 7, 3, 1, 2, 1, 6, 1, 2, 1, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 9, 4, 6, 1, 5, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 6, 7, 1, 2, 1, 3, 1, 3, 1, 11, 1, 3, 5, 3, 2, 4, 1, 7, 12, 3, 1, 7, 1, 2, 1, 4, 1, 6, 2, 3, 3, 2, 3, 13, 1, 6, 3, 8, 1, 2, 1, 8, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
A173557[n_] := If[n == 1, 1, Times @@ (FactorInteger[n][[All, 1]] - 1)]; Module[{b}, b[_] = 0; a[n_] := With[{t = A173557[n]}, b[t] = b[t] + 1]]; Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1])); v331179 = ordinal_transform(vector(up_to, n, A173557(n))); A331179(n) = v331179[n];
Comments