A332616 a(n) = value of the cubic form A^3 + B^3 + C^3 - 3ABC evaluated at row n of the table in A331195.
0, 1, 2, 0, 8, 9, 4, 16, 5, 0, 27, 28, 20, 35, 18, 7, 54, 28, 8, 0, 64, 65, 54, 72, 49, 32, 91, 56, 27, 10, 128, 81, 40, 11, 0, 125, 126, 112, 133, 104, 81, 152, 108, 70, 44, 189, 130, 77, 36, 13, 250, 176, 108, 52, 14, 0, 216, 217, 200, 224, 189, 160, 243
Offset: 0
Examples
For n=3, a(n) = f[1,1,0] = 1^3 + 1^3 + 0^3 - 3*1*1*0 = 2.
Links
- Mehmet A. Ates, Table of n, a(n) for n = 0..19599
- Mathematical Association of America, 2019 William Lowell Putnam Mathematical Competition Problems
Crossrefs
Programs
-
Mathematica
SeqSize = 30; ListSize = 120; F3List = List[]; f3[a_, b_, c_] := a^3 + b^3 + c^3 - 3*a*b*c For[i = 0, i <= SeqSize, i++, For[j = 0, j <= i, j++, For[k = 0, k <= j, k++, AppendTo[F3List, f3[i, j, k]]]]] ListPlot[F3List, PlotLabel -> "a(n)"] Print["First ", ListSize, " elements of a(n): ", Take[F3List, ListSize]]
Extensions
Edited by N. J. A. Sloane, Aug 06 2020
Comments