A331203 Numbers k such that k/(digsum(k)) is an integer cube.
1, 2, 3, 4, 5, 6, 7, 8, 9, 72, 243, 320, 486, 512, 640, 704, 832, 960, 1000, 1088, 1125, 2000, 2401, 3000, 3430, 4000, 4116, 4802, 5000, 5145, 5831, 6000, 6174, 6517, 6860, 7000, 7546, 8000, 8575, 8918, 9000, 9216, 9947, 19683, 35152, 35937, 41743, 43940, 46137
Offset: 1
Examples
a(11) = 243: 243/(2 + 4 + 3) = 27 = 3^3. a(12) = 320: 320/(3 + 2 + 0) = 64 = 4^3.
Programs
-
Magma
[n : n in[1 .. 1000] | IsIntegral((n/(&+Intseq(n)))^(1/3))];
-
Mathematica
Select[Range[100000], IntegerQ[CubeRoot[#/Total[IntegerDigits[#]]]] &]
-
PARI
is(n) = my (k=n/sumdigits(n)); type(k)==type(42) && ispower(k,3) \\ Rémy Sigrist, Jan 12 2020
Comments