cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331211 Number of green nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and one green node.

Original entry on oeis.org

1, 15, 117, 891, 6777, 51543, 392013, 2981475, 22675761, 172461663, 1311666021, 9975943179, 75872547369, 577052549415, 4388802753213, 33379264377459, 253867706760033, 1930803860947887, 14684827767302997, 111686210555580315, 849435201142733529, 6460422977475127287
Offset: 0

Views

Author

George Strand Vajagich, Mar 01 2020

Keywords

Examples

			For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 2 to get 102 add 15 to get 117.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 2 to get 774 add 177 to get 891.
		

Crossrefs

Cf. A332936 (number of blue nodes).
Similar sequences with a cycle size 3..6 are: A007483, A048876, A189274(n+1), A054490.

Programs

  • PARI
    Vec((1 + 7*x) / (1 - 8*x + 3*x^2) + O(x^20)) \\ Colin Barker, Mar 03 2020
  • Python
    g=1
    b=7
    sg=0
    sb=0
    bl=[]
    gl=[]
    for int in range(1,20):
      sg=g*1+b*2
      sb=b*7+g*2
      g=sg
      b=sb
      gl.append(g)
      bl.append(b)
    print(gl)
    

Formula

a(n) = a(n-1) + 2*b(n-1), b(n) = 2*a(n-1) + 7*b(n-1) with a(0) = 1 and b(0) = 7 where b(n) = A332936(n).
From Colin Barker, Mar 03 2020: (Start)
G.f.: (1 + 7*x) / (1 - 8*x + 3*x^2).
a(n) = 8*a(n-1) - 3*a(n-2) for n>1.
(End)
From Stefano Spezia, Mar 03 2020: (Start)
a(n) = ((4 - sqrt(13))^n*(-11 + sqrt(13)) + (4 + sqrt(13))^n*(11 + sqrt(13)))/(2*sqrt(13)).
E.g.f.: exp(4*x)*cosh(sqrt(13)*x) + (11*exp(4*x)*sinh(sqrt(13)*x))/sqrt(13).
(End)

Extensions

a(14)-a(21) from Stefano Spezia, Mar 03 2020
Typo in a(14) fixed by Colin Barker, Apr 26 2020