A331222 a(n) = numerator of squared radius R^2 of the circumcircle of the n-th non-obtuse triangle with integer sides i <= j <= k <= sqrt(i^2 + j^2) in a list of such triangles, the list being sorted by increasing size of R. Denominators are A331223.
1, 16, 4, 81, 81, 3, 81, 256, 64, 256, 16, 25, 625, 625, 256, 625, 625, 25, 1296, 64, 324, 48, 625, 81, 1296, 12, 625, 3136, 2401, 2401, 1225, 2401, 2401, 1296, 2401, 2401, 50176, 4096, 81, 1024, 49, 49, 4096, 256, 256, 4096, 2401, 1024, 4096, 35721, 6561
Offset: 1
Examples
The first terms b(n) = a(n)/A331223(n) correspond to the following triangles (i, j, k): b(1) = 1/3: (1,1,1), b(2) = 16/15: (1,2,2), b(3) = 4/3: (2,2,2), b(4) = 81/35: (1,3,3), b(5) = 81/32: (2,3,3), b(6) = 3/1: (3,3,3), b(7) = 81/20: (3,3,4), b(8) = 256/63: (1,4,4), b(9) = 64/15: (2,4,4), ... b(41) = b(42) = 49/3: (5,7,8), (7,7,7).
Formula
Squared radius of circumcircle of triangle with sides a, b, c:
R^2 = (a*b*c)^2 / (16*s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.
Comments