A331238 Triangle T(n, k) of the number of trees of order n with cutting number k >= 0.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 7, 2, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 8, 4, 7, 7, 2, 3, 3, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1; 0, 1; 0, 0, 1, 1; 0, 0, 0, 0, 1, 1, 1; 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 3, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 7, 2, 2, 3, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 8, 4, 7, 7, 2, 3, 3, 1, 1, 1; ... The smallest nonzero entry on each row occurs at n-2 and the maximum at (n-1)*(n-2)/2.
Links
- Sean A. Irvine, Rows n=1..27 flattened
- Frank Harary and Peter J. Slater, A linear algorithm for the cutting center of a tree, Information Processing Letters, 23 (1986), 317-319.
- Sean A. Irvine, Java program (github)
- Simon Mukwembi and Senelani Dorothy Hove-Musekwa, On bounds for the cutting number of a graph, Indian J. Pure Appl. Math., 43 (2012), 637-649.
Comments