A331272 Irregular triangle in which row n lists numbers m such that A330073(m,n) = 1.
1, 5, 25, 4, 125, 20, 625, 3, 100, 104, 3125, 15, 16, 500, 520, 15625, 2, 75, 80, 83, 86, 2500, 2600, 2604, 78125, 10, 12, 13, 375, 400, 415, 416, 430, 433, 12500, 13000, 13020, 390625, 50, 60, 62, 65, 66, 69, 71, 1875, 2000, 2075, 2080, 2083, 2150, 2165, 2166, 62500, 65000, 65100, 65104, 1953125
Offset: 0
Examples
The irregular triangle starts: 0: 1 1: 5 2: 25 3: 4 125 4: 20 625 5: 3 100 104 3125 6: 15 16 500 520 15625 7: 2 75 80 83 86 2500 2600 2604 78125 8: 10 12 13 375 400 415 416 430 433 12500 13000 13020 390625
Links
- T. Ahmed and H. Snevily, Are There an Infinite Number of Collatz Integers?, 2013.
- M. Bruschi, A generalization of the Collatz problem and conjecture, arXiv:0810.5169 [math.NT], 2008.
- W. Carnielli, Some Natural Generalizations Of The Collatz Problem, Applied Mathematics E-Notes, 15 (2015), 197-206.
Programs
-
PARI
A331272(lim)=my(N=[1], b=-1, RC=5*[2..5]); while(b
if(setsearch(RC,X%30)&&(X>RC[1]),[floor(X/6),5*X],X*5),N))[1,]))
Formula
If N is the list of numbers in row n, then the list of numbers in row n + 1 is the union of each number in N multiplied by 5 and numbers floor(x/6) where x is in N, congruent to 0 (mod 5), not congruent to 0 or 5 (mod 30), and floor(x/6) > 1.
Comments