A331277 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and columns in decreasing lexicographic order.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 1, 1, 0, 1, 62, 31, 1, 1, 0, 1, 900, 2649, 160, 1, 1, 0, 1, 16824, 441061, 116360, 841, 1, 1, 0, 1, 384668, 121105865, 231173330, 5364701, 4494, 1, 1, 0, 1, 10398480, 49615422851, 974787170226, 131147294251, 256452714, 24319, 1, 1
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 6 ----+--------------------------------------------------------------- 0 | 1 1 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 1 6 62 900 16824 384668 ... 3 | 1 1 31 2649 441061 121105865 49615422851 ... 4 | 1 1 160 116360 231173330 974787170226 ... 5 | 1 1 841 5364701 131147294251 ... 6 | 1 1 4494 256452714 78649359753286 ... ... The A(2,2) = 6 matrices are: [1 0] [1 0] [1 0] [1 1] [1 0] [1 0] [1 0] [0 1] [0 1] [1 0] [1 1] [0 1] [0 1] [1 0] [0 1] [0 1] [0 1] [1 1] [0 1] [0 1] [1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j,n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
Comments