A331278 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and columns in decreasing lexicographic order.
1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 12, 4, 1, 0, 1, 124, 124, 8, 1, 0, 1, 1800, 10596, 1280, 16, 1, 0, 1, 33648, 1764244, 930880, 13456, 32, 1, 0, 1, 769336, 484423460, 1849386640, 85835216, 143808, 64, 1, 0, 1, 20796960, 198461691404, 7798297361808, 2098356708016, 8206486848, 1556416, 128, 1
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 ----+--------------------------------------------------------------- 0 | 1 1 0 0 0 0 ... 1 | 1 1 1 1 1 1 ... 2 | 1 2 12 124 1800 33648 ... 3 | 1 4 124 10596 1764244 484423460 ... 4 | 1 8 1280 930880 1849386640 7798297361808 ... 5 | 1 16 13456 85835216 2098356708016 140094551934813712 ... 6 | 1 32 143808 8206486848 2516779512105152 ... ... The A(2,2) matrices are: [1 0] [1 0] [1 0] [2 0] [1 1] [1 0] [1 0] [0 1] [0 1] [0 1] [1 0] [1 1] [0 1] [1 0] [0 1] [0 1] [0 1] [0 1] [0 1] [0 1] [1 0] . [1 0] [1 0] [1 0] [2 1] [2 0] [1 0] [1 0] [0 2] [0 1] [0 1] [0 2] [1 2] [0 2] [1 0] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1,n),k)*sum(i=j, m, (-1)^(i-j)*binomial(i,j)))}
Comments