cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331288 a(n) = min(n, A225546(n)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 9, 10, 11, 12, 13, 14, 15, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 10, 33, 34, 35, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 20, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 15, 65, 66, 67, 68, 69, 70, 71, 54, 73, 74, 75, 76, 77, 78, 79, 80, 25, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2020

Keywords

Comments

For all i, j:
a(i) = a(j) => A331287(i) = A331287(j).

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Min[#, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 96] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A331288(n) = min(n, A225546(n));
    
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A225546(n) = { my(f=factor(n)); for (i=1, #f~, my(p=f[i, 1]); f[i, 1] = A019565(f[i, 2]); f[i, 2] = 2^(primepi(p)-1); ); factorback(f); }; \\ From A225546
    \\ If the following returns 1, then it is certainly true that A225546(p^e) > n (where p^e is one of the divisors of n), thus A225546(n) > n follows:
    is_certainly_gt(p,e,n) = { my(b=A019565(e),j=(primepi(p)-1)); if(b>n,1,if((logint(b,2)*j)>logint(n,2),1,0)); };
    A331288(n) = if((1==n)||isprime(n),n,my(f=factor(n)); for(i=1,#f~,if(is_certainly_gt(f[i,1],f[i,2],n),return(n))); min(n, A225546(n)));