A331330 a(n) is the number of sparse rulers of length n where the length of the first segment is unique.
0, 1, 1, 3, 4, 8, 14, 26, 46, 85, 155, 286, 528, 980, 1824, 3410, 6392, 12022, 22675, 42885, 81312, 154540, 294362, 561849, 1074463, 2058462, 3950220, 7592403, 14614105, 28168227, 54363000, 105043517, 203200635, 393496975, 762765642, 1479957400, 2874038529, 5585986973, 10865544853, 21150913457, 41201771886
Offset: 0
Keywords
Examples
All rulers of length four are listed below; those marked with x are counted: [0,4]x, [0,3,4]x, [0,2,4], [0,1,4]x, [0,2,3,4]x, [0,1,3,4], [0,1,2,4], [0,1,2,3,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 101 terms from Bert Dobbelaere)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( `if`(i=j, 0, b(n-j, `if`(nAlois P. Heinz, Feb 06 2020
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[nJean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
-
PARI
\\ omits the initial 0 lista(n)=Vec(sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k))) \\ Christian Sievers, May 06 2025
-
Python
cache={} def f( n, l1): args=(n, l1) if args in cache: return cache[args] s=0 for l in range(1, n+1): if l!=l1: s += 1 if l==n else f(n-l, l1) cache[args] = s return s def a331330(n): if n==0: return 0 s=1 for l1 in range(1, n+1): s += f( n-l1, l1) return s # Bert Dobbelaere, Feb 06 2020
Formula
a(n) = A331332(n,1) for n >= 1.
Conjecture: a(n) ~ 2^n / (n * log(2)). - Vaclav Kotesovec, Nov 16 2020
G.f.: Sum_{k>=1} x^k/(1-x/(1-x)+x^k). - Christian Sievers, May 06 2025
Extensions
More terms from Bert Dobbelaere, Feb 06 2020
Comments