cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331330 a(n) is the number of sparse rulers of length n where the length of the first segment is unique.

Original entry on oeis.org

0, 1, 1, 3, 4, 8, 14, 26, 46, 85, 155, 286, 528, 980, 1824, 3410, 6392, 12022, 22675, 42885, 81312, 154540, 294362, 561849, 1074463, 2058462, 3950220, 7592403, 14614105, 28168227, 54363000, 105043517, 203200635, 393496975, 762765642, 1479957400, 2874038529, 5585986973, 10865544853, 21150913457, 41201771886
Offset: 0

Views

Author

Peter Luschny, Jan 24 2020

Keywords

Comments

A sparse ruler, or simply a ruler, is a strict increasing finite sequence of nonnegative integers starting from 0 called marks. See A103294 for more definitions.
Also number of compositions of n where the first part is unique. - Christian Sievers, May 06 2025

Examples

			All rulers of length four are listed below; those marked with x are counted: [0,4]x, [0,3,4]x, [0,2,4], [0,1,4]x, [0,2,3,4]x, [0,1,3,4], [0,1,2,4], [0,1,2,3,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
         `if`(i=j, 0, b(n-j, `if`(nAlois P. Heinz, Feb 06 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[nJean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
  • PARI
    \\ omits the initial 0
    lista(n)=Vec(sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k))) \\ Christian Sievers, May 06 2025
  • Python
    cache={}
    def f( n, l1):
      args=(n, l1)
      if args in cache: return cache[args]
      s=0
      for l in range(1, n+1):
        if l!=l1:
          s += 1 if l==n else f(n-l, l1)
      cache[args] = s
      return s
    def a331330(n):
      if n==0: return 0
      s=1
      for l1 in range(1, n+1):
        s += f( n-l1, l1)
      return s
    # Bert Dobbelaere, Feb 06 2020
    

Formula

a(n) = A331332(n,1) for n >= 1.
Conjecture: a(n) ~ 2^n / (n * log(2)). - Vaclav Kotesovec, Nov 16 2020
G.f.: Sum_{k>=1} x^k/(1-x/(1-x)+x^k). - Christian Sievers, May 06 2025

Extensions

More terms from Bert Dobbelaere, Feb 06 2020