A331331 Triangle read by rows, T(n, k) (0 <= k <= n) = (-m)^(n-k)*[x^k] KummerU(-n, 1/m, x) for m = 3.
1, 1, 1, 4, 8, 1, 28, 84, 21, 1, 280, 1120, 420, 40, 1, 3640, 18200, 9100, 1300, 65, 1, 58240, 349440, 218400, 41600, 3120, 96, 1, 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1, 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
Offset: 0
Examples
Taylor series starts: 1 + (t + 1)*x + (t^2 + 8*t + 4)*x^2 + (t^3 + 21*t^2 + 84*t + 28)*x^3 + (t^4 + 40*t^3 + 420*t^2 + 1120*t + 280)*x^4 + O(x^5). Triangle starts: [0] 1 [1] 1, 1 [2] 4, 8, 1 [3] 28, 84, 21, 1 [4] 280, 1120, 420, 40, 1 [5] 3640, 18200, 9100, 1300, 65, 1 [6] 58240, 349440, 218400, 41600, 3120, 96, 1 [7] 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1 [8] 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
Crossrefs
Programs
-
Maple
ser := n -> series(KummerU(-n, 1/3, x), x, n+1): seq(seq((-3)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8); # Alternative: gf := exp(t*x/(1-3*x))/(1-3*x)^(1/3): ser := n -> series(gf, x, n+1): c := n -> coeff(ser(n), x, n): seq(seq(n!*coeff(c(n), t, k), k=0..n), n=0..8);
-
Mathematica
(* rows[n], n[0..oo] *) n=12;r={};For[k=0,k
Detlef Meya, Jul 31 2023 *)
Formula
E.g.f.: exp(t*x/(1-3*x))/(1-3*x)^(1/3).
Comments