cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331331 Triangle read by rows, T(n, k) (0 <= k <= n) = (-m)^(n-k)*[x^k] KummerU(-n, 1/m, x) for m = 3.

Original entry on oeis.org

1, 1, 1, 4, 8, 1, 28, 84, 21, 1, 280, 1120, 420, 40, 1, 3640, 18200, 9100, 1300, 65, 1, 58240, 349440, 218400, 41600, 3120, 96, 1, 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1, 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
Offset: 0

Views

Author

Peter Luschny, Jan 18 2020

Keywords

Comments

Second diagonal is A000567.

Examples

			Taylor series starts:
1 + (t + 1)*x + (t^2 + 8*t + 4)*x^2 + (t^3 + 21*t^2 + 84*t + 28)*x^3 + (t^4 + 40*t^3 + 420*t^2 + 1120*t + 280)*x^4 + O(x^5).
Triangle starts:
[0] 1
[1] 1,        1
[2] 4,        8,         1
[3] 28,       84,        21,        1
[4] 280,      1120,      420,       40,       1
[5] 3640,     18200,     9100,      1300,     65,      1
[6] 58240,    349440,    218400,    41600,    3120,    96,     1
[7] 1106560,  7745920,   5809440,   1383200,  138320,  6384,   133,   1
[8] 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
		

Crossrefs

Cf. T(n, 0) = A007559(n), T(n, n-1) = A000567(n) for n >= 1.
Cf. |A021009| (m=1), A176230 (m=2), this sequence (m=3).

Programs

  • Maple
    ser := n -> series(KummerU(-n, 1/3, x), x, n+1):
    seq(seq((-3)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8);
    # Alternative:
    gf := exp(t*x/(1-3*x))/(1-3*x)^(1/3): ser := n -> series(gf, x, n+1):
    c := n -> coeff(ser(n), x, n): seq(seq(n!*coeff(c(n), t, k), k=0..n), n=0..8);
  • Mathematica
    (* rows[n], n[0..oo] *)
    n=12;r={};For[k=0,kDetlef Meya, Jul 31 2023 *)

Formula

E.g.f.: exp(t*x/(1-3*x))/(1-3*x)^(1/3).