cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331339 E.g.f.: 1 / (1 + log(1 - x - x^2)).

Original entry on oeis.org

1, 1, 5, 32, 292, 3294, 44918, 714468, 13002456, 266275200, 6060498672, 151750887936, 4145522908272, 122690391196944, 3910569680464848, 133549150323123744, 4864927063250290176, 188297220693251438208, 7716800776602560577408
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Maple
    A331339 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n,k)*(k-1)!*A000204(k)*procname(n-k),k=1..n) ;
        end if;
    end proc:
    seq(A331339(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 + Log[1 - x - x^2]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k - 1)! * Lucas(k) * a(n-k).
a(n) ~ n! * 2^(n+1) * exp(n/2) / (sqrt(5*exp(1) - 4) * (sqrt(5*exp(1) - 4) - exp(1/2))^(n+1)). - Vaclav Kotesovec, Jan 26 2020