A331350 Number of oriented colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.
1, 40, 1197, 18592, 166885, 1019880, 4738153, 17962624, 58248153, 166920040, 432738229, 1032709536, 2298857821, 4822806184, 9613704465, 18329410048, 33605960689, 59516325288, 102196242685, 170682720160, 278019522837
Offset: 1
Links
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
Crossrefs
Programs
-
Mathematica
Table[(24n^2 + 20n^4 + 15n^6 + n^10)/60, {n, 1, 25}]
Formula
a(n) = (24*n^2 + 20*n^4 + 15*n^6 + n^10) / 60.
a(n) = C(n,1) + 38*C(n,2) + 1080*C(n,3) + 14040*C(n,4) + 85500*C(n,5) + 274104*C(n,6) + 493920*C(n,7) + 504000*C(n,8) + 272160*C(n,9) + 60480*C(n,10), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
Comments