A331390 Number of binary matrices with 3 distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.
1, 9, 29, 68, 134, 237, 388, 600, 887, 1265, 1751, 2364, 3124, 4053, 5174, 6512, 8093, 9945, 12097, 14580, 17426, 20669, 24344, 28488, 33139, 38337, 44123, 50540, 57632, 65445, 74026, 83424, 93689, 104873, 117029, 130212, 144478, 159885, 176492, 194360, 213551
Offset: 1
Keywords
Examples
The a(2) = 9 matrices are: [1, 0, 0] [1, 1, 0] [1, 0, 1] [1, 0, 0] [1, 0, 0] [1, 0, 0] [1, 0, 0] [1, 0, 0] [0, 1, 0] [0, 1, 0] [0, 1, 0] [0, 1, 1] [0, 1, 0] [0, 0, 1] [0, 1, 0] [0, 1, 0] [0, 0, 1] [0, 0, 1] [0, 0, 1] [0, 0, 1] [0, 0, 1] . [1, 1, 1] [1, 1, 0] [1, 1, 0] [1, 0, 1] [1, 1, 0] [1, 0, 0] [1, 0, 1] [1, 0, 0] [1, 0, 0] [1, 0, 1] [0, 1, 0] [0, 1, 0] [0, 1, 1] [0, 1, 1] [0, 1, 1] [0, 0, 1] [0, 0, 1] [0, 0, 1] [0, 1, 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Column k=3 of A331126.
Programs
-
PARI
a(n) = {round(((n+2)/2)^4) - 3*(n+1) + 2}
Formula
a(n) = round(((n+2)/2)^4) - 3*(n+1) + 2.
Comments