A331426
Prime numbers p such that p^2 divides 37^(p-1) - 1.
Original entry on oeis.org
2, 3, 77867, 76407520781
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
Wieferich primes to base b:
A001220 (b=2),
A014127 (b=3),
A123692 (b=5),
A123693 (b=7),
A128667 (b=13),
A128668 (b=17),
A090968 (b=19),
A128669 (b=23),
A331424 (b=31), this sequence (b=37),
A331427 (b=41).
-
Select[Range[10^5], PrimeQ[#] && PowerMod[37, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
-
forprime(p=2, 1e8, if(Mod(37, p^2)^(p-1)==1, print1(p", ")))
A331427
Prime numbers p such that p^2 divides 41^(p-1) - 1.
Original entry on oeis.org
2, 29, 1025273, 138200401
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
Wieferich primes to base b:
A001220 (b=2),
A014127 (b=3),
A123692 (b=5),
A123693 (b=7),
A128667 (b=13),
A128668 (b=17),
A090968 (b=19),
A128669 (b=23),
A331424 (b=31),
A331426 (b=37), this sequence (b=41).
-
Select[Range[1.1*10^6], PrimeQ[#] && PowerMod[41, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
-
forprime(p=2, 1e8, if(Mod(41, p^2)^(p-1)==1, print1(p", ")))
Showing 1-2 of 2 results.
Comments