A331423 Divide each side of a triangle into n>=1 equal parts and trace the corresponding cevians, i.e., join every point, except for the first and last ones, with the opposite vertex. a(n) is the number of points at which three cevians meet.
0, 1, 0, 7, 0, 13, 0, 19, 0, 25, 0, 31, 0, 37, 6, 43, 0, 49, 0, 61, 0, 61, 0, 91, 0, 73, 0, 79, 0, 91, 0, 91, 0, 97, 12, 103, 0, 109, 0, 133, 0, 133, 0, 127, 42, 133, 0, 187, 0, 145, 0, 151, 0, 157, 12, 175, 0, 169, 0, 235, 0, 181, 48, 187, 6, 205, 0, 199, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1045 (first 200 terms from Robert Israel)
- Peter Kagey, An illustration of A331423(4) = 7.
- Hugo Pfoertner, Visualization of diagonal intersections in an equilateral triangle.
- Jim Propp and Adam Propp-Gubin, Counting Triangles in Triangles, arXiv:2409.17117 [math.CO], 2024. See p. 9.
Programs
-
Maple
Ceva:= proc(n) local a, i, j, k; a:=0; for i from 1 to n-1 do for j from 1 to n-1 do for k from 1 to n-1 do if i*j*k/((n-i)*(n-j)*(n-k)) = 1 then a:=a+1; fi; od: od: od: a; end; t1:=[seq(Ceva(n), n=1..80)]; # N. J. A. Sloane, Feb 14 2020
-
Mathematica
CevIntersections[n_] := Length[Solve[(n - i)*(n - j)*(n - k) - i*j*k == 0 && 0 < i < n && 0 < j < n && 0 < k < n, {i, j, k}, Integers]]; Map[CevIntersections[#] &, Range[50]]
-
PARI
A331423(n) = sum(i=1, n-1, sum(j=1, n-1, sum(k=1, n-1, (1==(i*j*k)/((n-i)*(n-j)*(n-k)))))); \\ (After the Maple program) - Antti Karttunen, Dec 12 2021
Comments