cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331436 Array read by antidiagonals: A(n,k) is the number of n element multisets of n element multisets of a k-set.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 20, 1, 0, 1, 5, 55, 220, 70, 1, 0, 1, 6, 120, 1540, 3060, 252, 1, 0, 1, 7, 231, 7770, 73815, 53130, 924, 1, 0, 1, 8, 406, 30856, 1088430, 5461512, 1107568, 3432, 1, 0, 1, 9, 666, 102340, 11009376, 286243776, 581106988, 26978328, 12870, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2020

Keywords

Examples

			Array begins:
==================================================================
n\k | 0 1   2       3         4            5              6
----+-------------------------------------------------------------
  0 | 1 1   1       1         1            1              1 ...
  1 | 0 1   2       3         4            5              6 ...
  2 | 0 1   6      21        55          120            231 ...
  3 | 0 1  20     220      1540         7770          30856 ...
  4 | 0 1  70    3060     73815      1088430       11009376 ...
  5 | 0 1 252   53130   5461512    286243776     8809549056 ...
  6 | 0 1 924 1107568 581106988 127860662755 13949678575756 ...
    ...
The A(2,2) = 6 multisets are:
   {{1,1}, {1,1}},
   {{1,1}, {1,2}},
   {{1,1}, {2,2}},
   {{1,2}, {1,2}},
   {{1,2}, {2,2}},
   {{2,2}, {2,2}}.
		

Crossrefs

Rows n=0..3 are A000012, A001477, A002817, A140236.
Min diagonal is A331477.

Programs

  • PARI
    T(n,k)={binomial(binomial(n + k - 1, n) + n - 1, n)}
    { for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print) }

Formula

A(n,k) = binomial(binomial(n + k - 1, n) + n - 1, n).