A331436 Array read by antidiagonals: A(n,k) is the number of n element multisets of n element multisets of a k-set.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 20, 1, 0, 1, 5, 55, 220, 70, 1, 0, 1, 6, 120, 1540, 3060, 252, 1, 0, 1, 7, 231, 7770, 73815, 53130, 924, 1, 0, 1, 8, 406, 30856, 1088430, 5461512, 1107568, 3432, 1, 0, 1, 9, 666, 102340, 11009376, 286243776, 581106988, 26978328, 12870, 1, 0
Offset: 0
Examples
Array begins: ================================================================== n\k | 0 1 2 3 4 5 6 ----+------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 6 ... 2 | 0 1 6 21 55 120 231 ... 3 | 0 1 20 220 1540 7770 30856 ... 4 | 0 1 70 3060 73815 1088430 11009376 ... 5 | 0 1 252 53130 5461512 286243776 8809549056 ... 6 | 0 1 924 1107568 581106988 127860662755 13949678575756 ... ... The A(2,2) = 6 multisets are: {{1,1}, {1,1}}, {{1,1}, {1,2}}, {{1,1}, {2,2}}, {{1,2}, {1,2}}, {{1,2}, {2,2}}, {{2,2}, {2,2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
T(n,k)={binomial(binomial(n + k - 1, n) + n - 1, n)} { for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print) }
Formula
A(n,k) = binomial(binomial(n + k - 1, n) + n - 1, n).