A331453 Triangle read by rows: T(n,m) (n >= m >= 1) = number of vertices formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.
5, 13, 37, 35, 99, 257, 75, 213, 421, 817, 159, 401, 881, 1489, 2757, 275, 657, 1305, 2143, 3555, 4825, 477, 1085, 2131, 3431, 5821, 7663, 12293, 755, 1619, 2941, 4817, 7477, 9913, 15037, 19241, 1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549, 1659, 3257, 5603, 8637, 13689, 16953, 25125, 30779, 39857, 49577
Offset: 1
Examples
Triangle begins: 5, 13, 37, 35, 99, 257, 75, 213, 421, 817, 159, 401, 881, 1489, 2757, 275, 657, 1305, 2143, 3555, 4825, 477, 1085, 2131, 3431, 5821, 7663, 12293, 755, 1619, 2941, 4817, 7477, 9913, 15037, 19241, 1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549, ...
Links
- Lars Blomberg, Table of n, a(n) for n = 1..703 (the first 37 rows)
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk)
Comments