A331452
Triangle read by rows: T(n,m) (n >= m >= 1) = number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.
Original entry on oeis.org
4, 16, 56, 46, 142, 340, 104, 296, 608, 1120, 214, 544, 1124, 1916, 3264, 380, 892, 1714, 2820, 4510, 6264, 648, 1436, 2678, 4304, 6888, 9360, 13968, 1028, 2136, 3764, 6024, 9132, 12308, 17758, 22904, 1562, 3066, 5412, 8126, 12396, 16592, 23604, 29374, 38748, 2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256
Offset: 1
Triangle begins:
4;
16, 56;
46, 142, 340;
104, 296, 608, 1120;
214, 544, 1124, 1916, 3264;
380, 892, 1714, 2820, 4510, 6264;
648, 1436, 2678, 4304, 6888, 9360, 13968;
1028, 2136, 3764, 6024, 9132, 12308, 17758, 22904;
1562, 3066, 5412, 8126, 12396, 16592, 23604, 29374, 38748;
2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256;
...
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.
- Lars Blomberg, Table of n, a(n) for n = 1..703 (the first 37 rows)
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Johnny Fonseca, Intersections and Segments, Illustrations for T(n,m) with 2 <= n <= m <= 10, with intersection points shown on the left, and the full structures on the right. Solution to homework problem, Math 640, Rutgers Univ., Feb 11 2020.
- Johnny Fonseca, Intersections and Segments, Illustrations for T(n,m) with 2 <= n <= m <= 10, with intersection points shown on the left, and the full structures on the right. Solution to homework problem, Math 640, Rutgers Univ., Feb 11 2020. [Local copy]
- Scott R. Shannon, Colored illustration for T(1,1)
- Scott R. Shannon, Colored illustration for T(2,1)
- Scott R. Shannon, Colored illustration for T(3,1)
- Scott R. Shannon, Colored illustration for T(4,1)
- Scott R. Shannon, Colored illustration for T(5,1)
- Scott R. Shannon, Colored illustration for T(6,1)
- Scott R. Shannon, Colored illustration for T(7,1)
- Scott R. Shannon, Colored illustration for T(8,1)
- Scott R. Shannon, Colored illustration for T(9,1)
- Scott R. Shannon, Colored illustration for T(10,1)
- Scott R. Shannon, Colored illustration for T(11,1)
- Scott R. Shannon, Colored illustration for T(12,1)
- Scott R. Shannon, Colored illustration for T(13,1)
- Scott R. Shannon, Colored illustration for T(14,1)
- Scott R. Shannon, Colored illustration for T(15,1)
- Scott R. Shannon, Colored illustration for T(2,2)
- Scott R. Shannon, Colored illustration for T(3,2)
- Scott R. Shannon, Colored illustration for T(4,2)
- Scott R. Shannon, Colored illustration for T(5,2)
- Scott R. Shannon, Colored illustration for T(6,2)
- Scott R. Shannon, Colored illustration for T(9,2)
- Scott R. Shannon, Colored illustration for T(9,2) (edge number coloring)
- Scott R. Shannon, Colored illustration for T(10,2)
- Scott R. Shannon, Colored illustration for T(10,2) (edge number coloring)
- Scott R. Shannon, Colored illustration for T(3,3)
- Scott R. Shannon, Colored illustration for T(4,3)
- Scott R. Shannon, Colored illustration for T(5,3)
- Scott R. Shannon, Colored illustration for T(6,3)
- Scott R. Shannon, Colored illustration for T(9,3)
- Scott R. Shannon, Colored illustration for T(11,3) [The top of the figure has been modified]
- Scott R. Shannon, Colored illustration for T(4,4)
- Scott R. Shannon, Colored illustration for T(5,4)
- Scott R. Shannon, Colored illustration for T(6,4)
- Scott R. Shannon, Colored illustration for T(5,5)
- Scott R. Shannon, Colored illustration for T(6,5)
- Scott R. Shannon, Colored illustration for T(6,6)
- Scott R. Shannon, Colored illustration for T(6,6) (another version)
- Scott R. Shannon, Colored illustration for T(7,7)
- Scott R. Shannon, Colored illustration for T(10,7)
- Scott R. Shannon, Data underlying this triangle and A331453, A331454 [Includes numbers of polygonal regions with each number of edges.]
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk)
See
A333274 for the classification of vertices by valency.
A331755
Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.
Original entry on oeis.org
2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- Scott R. Shannon, Images of vertices for n=2.
- Scott R. Shannon, Images of vertices for n=3.
- Scott R. Shannon, Images of vertices for n=4.
- Scott R. Shannon, Images of vertices for n=5.
- Scott R. Shannon, Images of vertices for n=6
- Scott R. Shannon, Images of vertices for n=7
- Scott R. Shannon, Images of vertices for n=8
- Scott R. Shannon, Images of vertices for n=9
- Scott R. Shannon, Images of vertices for n=10.
- Scott R. Shannon, Images of vertices for n=12.
- Scott R. Shannon, Images of vertices for n=15.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Index entries for sequences related to stained glass windows
-
# Maple code from N. J. A. Sloane, Jul 16 2020
V106i := proc(n) local ans,a,b; ans:=0;
for a from 1 to n-1 do for b from 1 to n-1 do
if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004
V106ii := proc(n) local ans,a,b; ans:=0;
for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do
if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761
A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
-
a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)
A331765
Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1
A331763
Number of vertices formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
13, 37, 99, 213, 401, 657, 1085, 1619, 2327, 3257, 4457, 5883, 7751, 9885, 12403, 15513, 19131, 23181, 28115, 33601, 39745, 46821, 54865, 63733, 73879, 84889, 97063, 110639, 125649, 141797, 160129, 179981, 201175, 224481, 249403, 276291, 306003, 337425
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..100
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration for a(3) = 99
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
A331766
Number of regions formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
16, 56, 142, 296, 544, 892, 1436, 2136, 3066, 4272, 5840, 7688, 10094, 12884, 16182, 20192, 24918, 30200, 36614, 43692, 51756, 61008, 71544, 83040, 96202, 110692, 126702, 144372, 164144, 185200, 209192, 234928, 262706, 293244, 326002, 361240, 400170, 441516
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..100
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration for a(3) = 142.
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
A331454
Triangle read by rows: T(n,m) (n >= m >= 1) = number of line segments formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.
Original entry on oeis.org
8, 28, 92, 80, 240, 596, 178, 508, 1028, 1936, 372, 944, 2004, 3404, 6020, 654, 1548, 3018, 4962, 8064, 11088, 1124, 2520, 4808, 7734, 12708, 17022, 26260, 1782, 3754, 6704, 10840, 16608, 22220, 32794, 42144, 2724, 5392, 9780, 14620, 22788, 30238, 44028, 54024, 72296, 3914, 7528, 12720, 19428, 29914, 37848, 54612, 67590, 86906, 107832
Offset: 1
Triangle begins:
8,
28, 92,
80, 240, 596,
178, 508, 1028, 1936,
372, 944, 2004, 3404, 6020,
654, 1548, 3018, 4962, 8064, 11088,
1124, 2520, 4808, 7734, 12708, 17022, 26260,
1782, 3754, 6704, 10840, 16608, 22220, 32794, 42144,
2724, 5392, 9780, 14620, 22788, 30238, 44028, 54024, 72296,
...
A332606
Number of triangles in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
14, 48, 102, 192, 326, 524, 802, 1192, 1634, 2296, 3074, 4052, 5246, 6740, 8398, 10440, 12770, 15512, 18782, 22384, 26386, 31204, 36482, 42232, 48826, 56508, 64318, 73356, 83366, 93996, 106010, 118788, 132634, 148600, 164814, 182648, 201998, 223172, 245634
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332607,
A332608,
A332609.
A332607
Number of quadrilaterals in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
2, 8, 36, 92, 194, 336, 554, 812, 1314, 1756, 2508, 3252, 4348, 5464, 7054, 8760, 11050, 13324, 16162, 19256, 23188, 27120, 32098, 37396, 43456, 49516, 57608, 65440, 74670, 84388, 95674, 107656, 120990, 133996, 150144, 166424, 185090, 203960, 224926, 247120
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332608,
A332609.
A330913
The number of vertices formed by straight line segments mutually connecting all vertices of a semicircular polygon defined in A333642.
Original entry on oeis.org
4, 8, 16, 34, 63, 113, 185, 253, 438, 638, 854, 1228, 1641, 1825, 2783, 3543, 4304, 5508, 6748, 7745, 9859, 11773, 13653, 16409, 19178, 21838, 25770, 29648, 32696, 38683, 43899, 48903, 55916, 62784, 69604, 78378, 87175, 95699, 106993, 118093, 128431, 142838
Offset: 1
A332608
Number of pentagons in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
0, 0, 4, 12, 24, 28, 80, 128, 112, 200, 236, 356, 472, 652, 656, 940, 1040, 1300, 1600, 1948, 2048, 2588, 2856, 3260, 3716, 4492, 4572, 5324, 5904, 6508, 7200, 8144, 8664, 10296, 10548, 11664, 12580, 13860, 14596, 15980, 17312, 18516, 19692, 22152, 22912
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332609.
Showing 1-10 of 12 results.
Comments