cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A331452 Triangle read by rows: T(n,m) (n >= m >= 1) = number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.

Original entry on oeis.org

4, 16, 56, 46, 142, 340, 104, 296, 608, 1120, 214, 544, 1124, 1916, 3264, 380, 892, 1714, 2820, 4510, 6264, 648, 1436, 2678, 4304, 6888, 9360, 13968, 1028, 2136, 3764, 6024, 9132, 12308, 17758, 22904, 1562, 3066, 5412, 8126, 12396, 16592, 23604, 29374, 38748, 2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256
Offset: 1

Views

Author

Keywords

Comments

Take a grid of m+1 X n+1 points. There are 2*(m+n) points on the perimeter. Join every pair of the perimeter points by a line segment. The lines do not extend outside the grid. T(m,n) is the number of regions formed by these lines, and A331453(m,n) and A331454(m,n) give the number of vertices and the number of line segments respectively.
A288187 is a similar sequence, except there every pair of the (m+1)*(n+1) points of the grid (including the interior points) are joined by line segments. The (m,1) (m>=1) and (2,2) entries here and in A288187 are the same, while all other entries are different.

Examples

			Triangle begins:
     4;
    16,   56;
    46,  142,  340;
   104,  296,  608,  1120;
   214,  544, 1124,  1916,  3264;
   380,  892, 1714,  2820,  4510,  6264;
   648, 1436, 2678,  4304,  6888,  9360, 13968;
  1028, 2136, 3764,  6024,  9132, 12308, 17758, 22904;
  1562, 3066, 5412,  8126, 12396, 16592, 23604, 29374, 38748;
  2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256;
  ...
		

References

  • Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.
  • Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.

Crossrefs

The first column is A306302, the main diagonal is A255011.
The second column is A331766.
See A333274 for the classification of vertices by valency.

A331765 Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1

Views

Author

Keywords

Comments

Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.

Crossrefs

Column 2 of A331454.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020

A331763 Number of vertices formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

13, 37, 99, 213, 401, 657, 1085, 1619, 2327, 3257, 4457, 5883, 7751, 9885, 12403, 15513, 19131, 23181, 28115, 33601, 39745, 46821, 54865, 63733, 73879, 84889, 97063, 110639, 125649, 141797, 160129, 179981, 201175, 224481, 249403, 276291, 306003, 337425
Offset: 1

Views

Author

Keywords

Comments

Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.

Crossrefs

Column 2 of A331453.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020

A331757 Number of edges in a figure made up of a row of n adjacent congruent rectangles upon drawing diagonals of all possible rectangles.

Original entry on oeis.org

8, 28, 80, 178, 372, 654, 1124, 1782, 2724, 3914, 5580, 7626, 10352, 13590, 17540, 22210, 28040, 34670, 42760, 51962, 62612, 74494, 88508, 104042, 121912, 141534, 163664, 187942, 215636, 245490, 279260, 316022, 356456, 399898, 447612, 498698, 555352
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2020

Keywords

Crossrefs

A306302 gives number of regions in the figure.
This is column 1 of A331454.

Programs

  • Mathematica
    Table[n^2 + 4n + 1 + Sum[Sum[(2 * Boole[GCD[i, j] == 1] - Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}], {n, 1, 37}] (* Joshua Oliver, Feb 05 2020 *)
  • Python
    from sympy import totient
    def A331757(n): return 8 if n == 1 else 2*(n*(n+3) + sum(totient(i)*(n+1-i)*(n+1+i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1))) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = (2*n + 2 + 3*A324042(n) + 4*A324043(n))/2 [Corrected by Chai Wah Wu, Aug 16 2021]
For n > 1, a(n) = 2*(n*(n+3) + Sum_{i=2..floor(n/2)} (n+1-i)*(n+1+i)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i)). - Chai Wah Wu, Aug 16 2021

A331766 Number of regions formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

16, 56, 142, 296, 544, 892, 1436, 2136, 3066, 4272, 5840, 7688, 10094, 12884, 16182, 20192, 24918, 30200, 36614, 43692, 51756, 61008, 71544, 83040, 96202, 110692, 126702, 144372, 164144, 185200, 209192, 234928, 262706, 293244, 326002, 361240, 400170, 441516
Offset: 1

Views

Author

Keywords

Comments

The grid consists of a rectangular array of 3 X (n+1) dots. If we instead count squares, the dimensions are 2 X n.
Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.
For n<=100, 7-gons: 4 for n=9, 4 for n=18; 8-gons: 2 for n=9; no 9-gons or 10-gons. Lars Blomberg, Apr 28 2020

Crossrefs

Column 2 of A331452.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020

A331453 Triangle read by rows: T(n,m) (n >= m >= 1) = number of vertices formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.

Original entry on oeis.org

5, 13, 37, 35, 99, 257, 75, 213, 421, 817, 159, 401, 881, 1489, 2757, 275, 657, 1305, 2143, 3555, 4825, 477, 1085, 2131, 3431, 5821, 7663, 12293, 755, 1619, 2941, 4817, 7477, 9913, 15037, 19241, 1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549, 1659, 3257, 5603, 8637, 13689, 16953, 25125, 30779, 39857, 49577
Offset: 1

Views

Author

Keywords

Comments

Take a grid of m+1 X n+1 points. There are 2*(m+n) points on the perimeter. Join every pair of the perimeter points by a line (of finite length). The lines do not extend outside the grid. T(m,n) is the number of vertices in the resulting diagram, and A331452(m,n) and A331454(m,n) give the number of regions and the number of line segments respectively.
For illustrations see the links in A331452.

Examples

			Triangle begins:
5,
13, 37,
35, 99, 257,
75, 213, 421, 817,
159, 401, 881, 1489, 2757,
275, 657, 1305, 2143, 3555, 4825,
477, 1085, 2131, 3431, 5821, 7663, 12293,
755, 1619, 2941, 4817, 7477, 9913, 15037, 19241,
1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549,
...
		

Crossrefs

The main diagonal is A331449.
The first two columns are A331755 and A331763.

A332606 Number of triangles in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

14, 48, 102, 192, 326, 524, 802, 1192, 1634, 2296, 3074, 4052, 5246, 6740, 8398, 10440, 12770, 15512, 18782, 22384, 26386, 31204, 36482, 42232, 48826, 56508, 64318, 73356, 83366, 93996, 106010, 118788, 132634, 148600, 164814, 182648, 201998, 223172, 245634
Offset: 1

Views

Author

Keywords

Comments

See A331452 (the illustrations for T(n,2)) for pictures of these graphs.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, Apr 28 2020

A332607 Number of quadrilaterals in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

2, 8, 36, 92, 194, 336, 554, 812, 1314, 1756, 2508, 3252, 4348, 5464, 7054, 8760, 11050, 13324, 16162, 19256, 23188, 27120, 32098, 37396, 43456, 49516, 57608, 65440, 74670, 84388, 95674, 107656, 120990, 133996, 150144, 166424, 185090, 203960, 224926, 247120
Offset: 1

Views

Author

Keywords

Comments

See A331452 (the illustrations for T(n,2)) for pictures of these graphs.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, Apr 28 2020

A332608 Number of pentagons in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

0, 0, 4, 12, 24, 28, 80, 128, 112, 200, 236, 356, 472, 652, 656, 940, 1040, 1300, 1600, 1948, 2048, 2588, 2856, 3260, 3716, 4492, 4572, 5324, 5904, 6508, 7200, 8144, 8664, 10296, 10548, 11664, 12580, 13860, 14596, 15980, 17312, 18516, 19692, 22152, 22912
Offset: 1

Views

Author

Keywords

Comments

See A331452 (the illustrations for T(n,2)) for pictures of these graphs.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, Apr 28 2020

A333283 Triangle read by rows: T(m,n) (m >= n >= 1) = number of edges formed by drawing the line segments connecting any two of the (m+1) X (n+1) lattice points in an m X n grid of squares and extending them to the boundary of the grid.

Original entry on oeis.org

8, 28, 92, 80, 320, 1028, 178, 716, 2348, 5512, 372, 1604, 5332, 12676, 28552, 654, 2834, 9404, 22238, 49928, 87540, 1124, 5008, 16696, 39496, 88540, 156504, 279100, 1782, 7874, 26458, 62818, 141386, 251136, 447870
Offset: 1

Views

Author

Keywords

Comments

If we only joined pairs of the 2(m+n) boundary points, we would get A331454. If we did not extend the lines to the boundary of the grid, we would get A333278. (One of the links below shows the difference between the three definitions in the case m=3, n=2.)
See A333282 for a large number of colored illustrations.

Examples

			Triangle begins:
8,
28, 92,
80, 320, 1028,
178, 716, 2348, 5512,
372, 1604, 5332, 12676, 28552,
654, 2834, 9404, 22238, 49928, 87540,
1124, 5008, 16696, 39496, 88540, 156504, 279100,
1782, 7874, 26458, 62818, 141386, 251136, 447870, ...
...
T(7,7) corrected Mar 19 2020
		

Crossrefs

Cf. A288187, A331452, A333278, A331454, A333282 (regions), A333284 (vertices). Column 1 is A331757.

Extensions

More terms and corrections from Scott R. Shannon, Mar 21 2020
Showing 1-10 of 12 results. Next