A331452
Triangle read by rows: T(n,m) (n >= m >= 1) = number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.
Original entry on oeis.org
4, 16, 56, 46, 142, 340, 104, 296, 608, 1120, 214, 544, 1124, 1916, 3264, 380, 892, 1714, 2820, 4510, 6264, 648, 1436, 2678, 4304, 6888, 9360, 13968, 1028, 2136, 3764, 6024, 9132, 12308, 17758, 22904, 1562, 3066, 5412, 8126, 12396, 16592, 23604, 29374, 38748, 2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256
Offset: 1
Triangle begins:
4;
16, 56;
46, 142, 340;
104, 296, 608, 1120;
214, 544, 1124, 1916, 3264;
380, 892, 1714, 2820, 4510, 6264;
648, 1436, 2678, 4304, 6888, 9360, 13968;
1028, 2136, 3764, 6024, 9132, 12308, 17758, 22904;
1562, 3066, 5412, 8126, 12396, 16592, 23604, 29374, 38748;
2256, 4272, 7118, 10792, 16226, 20896, 29488, 36812, 47050, 58256;
...
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, Integers, Ron Graham Memorial Volume 21A (2021), #A5. Also in book, "Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham", ed. B. M. Landman et al., De Gruyter, 2022, pp. 65-97.
- Lars Blomberg, Table of n, a(n) for n = 1..703 (the first 37 rows)
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Johnny Fonseca, Intersections and Segments, Illustrations for T(n,m) with 2 <= n <= m <= 10, with intersection points shown on the left, and the full structures on the right. Solution to homework problem, Math 640, Rutgers Univ., Feb 11 2020.
- Johnny Fonseca, Intersections and Segments, Illustrations for T(n,m) with 2 <= n <= m <= 10, with intersection points shown on the left, and the full structures on the right. Solution to homework problem, Math 640, Rutgers Univ., Feb 11 2020. [Local copy]
- Scott R. Shannon, Colored illustration for T(1,1)
- Scott R. Shannon, Colored illustration for T(2,1)
- Scott R. Shannon, Colored illustration for T(3,1)
- Scott R. Shannon, Colored illustration for T(4,1)
- Scott R. Shannon, Colored illustration for T(5,1)
- Scott R. Shannon, Colored illustration for T(6,1)
- Scott R. Shannon, Colored illustration for T(7,1)
- Scott R. Shannon, Colored illustration for T(8,1)
- Scott R. Shannon, Colored illustration for T(9,1)
- Scott R. Shannon, Colored illustration for T(10,1)
- Scott R. Shannon, Colored illustration for T(11,1)
- Scott R. Shannon, Colored illustration for T(12,1)
- Scott R. Shannon, Colored illustration for T(13,1)
- Scott R. Shannon, Colored illustration for T(14,1)
- Scott R. Shannon, Colored illustration for T(15,1)
- Scott R. Shannon, Colored illustration for T(2,2)
- Scott R. Shannon, Colored illustration for T(3,2)
- Scott R. Shannon, Colored illustration for T(4,2)
- Scott R. Shannon, Colored illustration for T(5,2)
- Scott R. Shannon, Colored illustration for T(6,2)
- Scott R. Shannon, Colored illustration for T(9,2)
- Scott R. Shannon, Colored illustration for T(9,2) (edge number coloring)
- Scott R. Shannon, Colored illustration for T(10,2)
- Scott R. Shannon, Colored illustration for T(10,2) (edge number coloring)
- Scott R. Shannon, Colored illustration for T(3,3)
- Scott R. Shannon, Colored illustration for T(4,3)
- Scott R. Shannon, Colored illustration for T(5,3)
- Scott R. Shannon, Colored illustration for T(6,3)
- Scott R. Shannon, Colored illustration for T(9,3)
- Scott R. Shannon, Colored illustration for T(11,3) [The top of the figure has been modified]
- Scott R. Shannon, Colored illustration for T(4,4)
- Scott R. Shannon, Colored illustration for T(5,4)
- Scott R. Shannon, Colored illustration for T(6,4)
- Scott R. Shannon, Colored illustration for T(5,5)
- Scott R. Shannon, Colored illustration for T(6,5)
- Scott R. Shannon, Colored illustration for T(6,6)
- Scott R. Shannon, Colored illustration for T(6,6) (another version)
- Scott R. Shannon, Colored illustration for T(7,7)
- Scott R. Shannon, Colored illustration for T(10,7)
- Scott R. Shannon, Data underlying this triangle and A331453, A331454 [Includes numbers of polygonal regions with each number of edges.]
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk)
See
A333274 for the classification of vertices by valency.
A331765
Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1
A331763
Number of vertices formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
13, 37, 99, 213, 401, 657, 1085, 1619, 2327, 3257, 4457, 5883, 7751, 9885, 12403, 15513, 19131, 23181, 28115, 33601, 39745, 46821, 54865, 63733, 73879, 84889, 97063, 110639, 125649, 141797, 160129, 179981, 201175, 224481, 249403, 276291, 306003, 337425
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..100
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration for a(3) = 99
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
A331757
Number of edges in a figure made up of a row of n adjacent congruent rectangles upon drawing diagonals of all possible rectangles.
Original entry on oeis.org
8, 28, 80, 178, 372, 654, 1124, 1782, 2724, 3914, 5580, 7626, 10352, 13590, 17540, 22210, 28040, 34670, 42760, 51962, 62612, 74494, 88508, 104042, 121912, 141534, 163664, 187942, 215636, 245490, 279260, 316022, 356456, 399898, 447612, 498698, 555352
Offset: 1
A306302 gives number of regions in the figure.
-
Table[n^2 + 4n + 1 + Sum[Sum[(2 * Boole[GCD[i, j] == 1] - Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}], {n, 1, 37}] (* Joshua Oliver, Feb 05 2020 *)
-
from sympy import totient
def A331757(n): return 8 if n == 1 else 2*(n*(n+3) + sum(totient(i)*(n+1-i)*(n+1+i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1))) # Chai Wah Wu, Aug 16 2021
A331766
Number of regions formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
16, 56, 142, 296, 544, 892, 1436, 2136, 3066, 4272, 5840, 7688, 10094, 12884, 16182, 20192, 24918, 30200, 36614, 43692, 51756, 61008, 71544, 83040, 96202, 110692, 126702, 144372, 164144, 185200, 209192, 234928, 262706, 293244, 326002, 361240, 400170, 441516
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..100
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration for a(3) = 142.
- Scott R. Shannon, Data specifically for nX2 (or 2Xn) rectangles
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
A331453
Triangle read by rows: T(n,m) (n >= m >= 1) = number of vertices formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.
Original entry on oeis.org
5, 13, 37, 35, 99, 257, 75, 213, 421, 817, 159, 401, 881, 1489, 2757, 275, 657, 1305, 2143, 3555, 4825, 477, 1085, 2131, 3431, 5821, 7663, 12293, 755, 1619, 2941, 4817, 7477, 9913, 15037, 19241, 1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549, 1659, 3257, 5603, 8637, 13689, 16953, 25125, 30779, 39857, 49577
Offset: 1
Triangle begins:
5,
13, 37,
35, 99, 257,
75, 213, 421, 817,
159, 401, 881, 1489, 2757,
275, 657, 1305, 2143, 3555, 4825,
477, 1085, 2131, 3431, 5821, 7663, 12293,
755, 1619, 2941, 4817, 7477, 9913, 15037, 19241,
1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549,
...
- Lars Blomberg, Table of n, a(n) for n = 1..703 (the first 37 rows)
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk)
A332606
Number of triangles in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
14, 48, 102, 192, 326, 524, 802, 1192, 1634, 2296, 3074, 4052, 5246, 6740, 8398, 10440, 12770, 15512, 18782, 22384, 26386, 31204, 36482, 42232, 48826, 56508, 64318, 73356, 83366, 93996, 106010, 118788, 132634, 148600, 164814, 182648, 201998, 223172, 245634
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332607,
A332608,
A332609.
A332607
Number of quadrilaterals in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
2, 8, 36, 92, 194, 336, 554, 812, 1314, 1756, 2508, 3252, 4348, 5464, 7054, 8760, 11050, 13324, 16162, 19256, 23188, 27120, 32098, 37396, 43456, 49516, 57608, 65440, 74670, 84388, 95674, 107656, 120990, 133996, 150144, 166424, 185090, 203960, 224926, 247120
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332608,
A332609.
A332608
Number of pentagons in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
0, 0, 4, 12, 24, 28, 80, 128, 112, 200, 236, 356, 472, 652, 656, 940, 1040, 1300, 1600, 1948, 2048, 2588, 2856, 3260, 3716, 4492, 4572, 5324, 5904, 6508, 7200, 8144, 8664, 10296, 10548, 11664, 12580, 13860, 14596, 15980, 17312, 18516, 19692, 22152, 22912
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332609.
A333283
Triangle read by rows: T(m,n) (m >= n >= 1) = number of edges formed by drawing the line segments connecting any two of the (m+1) X (n+1) lattice points in an m X n grid of squares and extending them to the boundary of the grid.
Original entry on oeis.org
8, 28, 92, 80, 320, 1028, 178, 716, 2348, 5512, 372, 1604, 5332, 12676, 28552, 654, 2834, 9404, 22238, 49928, 87540, 1124, 5008, 16696, 39496, 88540, 156504, 279100, 1782, 7874, 26458, 62818, 141386, 251136, 447870
Offset: 1
Triangle begins:
8,
28, 92,
80, 320, 1028,
178, 716, 2348, 5512,
372, 1604, 5332, 12676, 28552,
654, 2834, 9404, 22238, 49928, 87540,
1124, 5008, 16696, 39496, 88540, 156504, 279100,
1782, 7874, 26458, 62818, 141386, 251136, 447870, ...
...
T(7,7) corrected Mar 19 2020
- Seppo Mustonen, Statistical accuracy of geometric constructions, 2008.
- Seppo Mustonen, Statistical accuracy of geometric constructions, 2008 [Local copy]
- Seppo Mustonen, On lines and their intersection points in a rectangular grid of points, 2009
- Seppo Mustonen, On lines and their intersection points in a rectangular grid of points, 2009 [Local copy]
- Seppo Mustonen, On lines going through a given number of points in a rectangular grid of points, 2010
- Seppo Mustonen, On lines going through a given number of points in a rectangular grid of points, 2010 [Local copy]
- N. J. A. Sloane, Illustration of T(3,2) = 320. [Black lines correspond to A331454(3,2), black + red lines correspond to A333278(3,2), and black + red + blue lines to T(3,2)]
- N. J. A. Sloane, Illustration of T(3,3) = 1028 [Black lines correspond to A288187(3,3), and black + red lines to T(3,3)]
Showing 1-10 of 12 results.
Comments