cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A335687 (A331763(n) - A331755(n+1))/2.

Original entry on oeis.org

4, 12, 32, 69, 121, 191, 304, 432, 582, 799, 1042, 1320, 1661, 2043, 2457, 3023, 3575, 4195, 4920, 5693, 6465, 7487, 8502, 9617, 10833, 12173, 13526, 15146, 16693, 18397, 20286, 22327, 24201, 26603, 28841, 31372, 34025, 36873, 39583, 42913, 46029
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2020

Keywords

Comments

One-half of ((number of vertices in graph SC(n,2)) - (number of vertices in graph SC(n,1))).
It would be nice to have a formula for this sequence. The graphs SC(n,1) are fairly well understood, while SC(n,m) is basically a mystery for m >= 2.
Note that the offsets in A331755 and A331763 have different meanings, which is why there is an extra "+1" in the definition of the current sequence.

Examples

			For n=2, SC(2,2) has 37 vertices and SC(2,1) has 13 vertices (see illustrations), so a(2) = (37-13)/2 = 12.
		

Crossrefs

A331765 Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1

Views

Author

Keywords

Comments

Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.

Crossrefs

Column 2 of A331454.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020

A332599 Triangle read by rows: T(n,k) = number of vertices in a "frame" of size n X k (see Comments in A331457 for definition).

Original entry on oeis.org

5, 13, 37, 35, 99, 152, 75, 213, 256, 364, 159, 401, 448, 568, 776, 275, 657, 704, 836, 1056, 1340, 477, 1085, 1132, 1276, 1508, 1804, 2272, 755, 1619, 1712, 1868, 2112, 2420, 2900, 3532, 1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336, 1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516
Offset: 1

Views

Author

Keywords

Comments

See A331457 and A331776 for further illustrations.
There is a crucial difference between frames of size nX2 and size nXk with k = 1 or k >= 3. If k != 2, all regions are either triangles or quadrilaterals, but for k=2 regions with larger numbers of sides can appear. Remember also that for k <= 2, the "frame" has no hole, and the graph has genus 0, whereas for k >= 3 there is a nontrivial hole and the graph has genus 1.

Examples

			Triangle begins:
[5],
[13, 37],
[35, 99, 152],
[75, 213, 256, 364],
[159, 401, 448, 568, 776],
[275, 657, 704, 836, 1056, 1340],
[477, 1085, 1132, 1276, 1508, 1804, 2272],
[755, 1619, 1712, 1868, 2112, 2420, 2900, 3532],
[1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336],
[1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516],
...
		

Crossrefs

The main diagonal is A332598.

Formula

Column 1 is A331755, for which there is an explicit formula.
Column 2 is A331763, for which no formula is known.
For m >= n >= 3, T(m,n) = A332600(m,n) - A331457(m,n) (Euler for genus 1 graph), and both A332600 and A331457 have explicit formulas.

Extensions

More terms from N. J. A. Sloane, Mar 13 2020

A331766 Number of regions formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

16, 56, 142, 296, 544, 892, 1436, 2136, 3066, 4272, 5840, 7688, 10094, 12884, 16182, 20192, 24918, 30200, 36614, 43692, 51756, 61008, 71544, 83040, 96202, 110692, 126702, 144372, 164144, 185200, 209192, 234928, 262706, 293244, 326002, 361240, 400170, 441516
Offset: 1

Views

Author

Keywords

Comments

The grid consists of a rectangular array of 3 X (n+1) dots. If we instead count squares, the dimensions are 2 X n.
Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.
For n<=100, 7-gons: 4 for n=9, 4 for n=18; 8-gons: 2 for n=9; no 9-gons or 10-gons. Lars Blomberg, Apr 28 2020

Crossrefs

Column 2 of A331452.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020

A331453 Triangle read by rows: T(n,m) (n >= m >= 1) = number of vertices formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.

Original entry on oeis.org

5, 13, 37, 35, 99, 257, 75, 213, 421, 817, 159, 401, 881, 1489, 2757, 275, 657, 1305, 2143, 3555, 4825, 477, 1085, 2131, 3431, 5821, 7663, 12293, 755, 1619, 2941, 4817, 7477, 9913, 15037, 19241, 1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549, 1659, 3257, 5603, 8637, 13689, 16953, 25125, 30779, 39857, 49577
Offset: 1

Views

Author

Keywords

Comments

Take a grid of m+1 X n+1 points. There are 2*(m+n) points on the perimeter. Join every pair of the perimeter points by a line (of finite length). The lines do not extend outside the grid. T(m,n) is the number of vertices in the resulting diagram, and A331452(m,n) and A331454(m,n) give the number of regions and the number of line segments respectively.
For illustrations see the links in A331452.

Examples

			Triangle begins:
5,
13, 37,
35, 99, 257,
75, 213, 421, 817,
159, 401, 881, 1489, 2757,
275, 657, 1305, 2143, 3555, 4825,
477, 1085, 2131, 3431, 5821, 7663, 12293,
755, 1619, 2941, 4817, 7477, 9913, 15037, 19241,
1163, 2327, 4369, 6495, 10393, 13647, 20425, 24651, 33549,
...
		

Crossrefs

The main diagonal is A331449.
The first two columns are A331755 and A331763.

A332606 Number of triangles in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

14, 48, 102, 192, 326, 524, 802, 1192, 1634, 2296, 3074, 4052, 5246, 6740, 8398, 10440, 12770, 15512, 18782, 22384, 26386, 31204, 36482, 42232, 48826, 56508, 64318, 73356, 83366, 93996, 106010, 118788, 132634, 148600, 164814, 182648, 201998, 223172, 245634
Offset: 1

Views

Author

Keywords

Comments

See A331452 (the illustrations for T(n,2)) for pictures of these graphs.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, Apr 28 2020

A332607 Number of quadrilaterals in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

2, 8, 36, 92, 194, 336, 554, 812, 1314, 1756, 2508, 3252, 4348, 5464, 7054, 8760, 11050, 13324, 16162, 19256, 23188, 27120, 32098, 37396, 43456, 49516, 57608, 65440, 74670, 84388, 95674, 107656, 120990, 133996, 150144, 166424, 185090, 203960, 224926, 247120
Offset: 1

Views

Author

Keywords

Comments

See A331452 (the illustrations for T(n,2)) for pictures of these graphs.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, Apr 28 2020

A333279 Column 2 of triangle in A288187.

Original entry on oeis.org

16, 56, 176, 388, 822, 1452, 2516, 3952, 6060, 8736, 12492, 17040, 23102, 30280, 39234, 49688, 62730, 77556, 95642, 115992, 139874, 166560, 197992, 232600, 272574, 316460, 366390, 420792, 482748, 549516, 624962, 706436, 796766, 893844, 1001074, 1115428
Offset: 1

Views

Author

Keywords

Comments

For the graphs defined in A331452 and A288187 only the counts for graphs that are one square wide have formulas for regions, edges, and vertices (see A306302, A331757, A331755). For width 2 there are six such sequences (A331766, A331765, A331763; A333279, A333280, A333281). It would be nice to have a formula for any one of them.
The maximum number of edges over all chambers is 4 for 1 <= n <= 4 and 5 for 5 <= n <= 160. - Lars Blomberg, May 23 2021

Crossrefs

Extensions

a(10) and beyond from Lars Blomberg, May 23 2021

A333280 Column 2 of triangle in A333278.

Original entry on oeis.org

28, 92, 296, 652, 1408, 2470, 4312, 6774, 10428, 14992, 21492, 29328, 39876, 52184, 67616, 85588, 108192, 133674, 164992, 200158, 241560, 287428, 341768, 401472, 470764, 546230, 632404, 726170, 833420, 948550, 1079204, 1220054, 1376552, 1543742, 1729000
Offset: 1

Views

Author

Keywords

Comments

For the graphs defined in A331452 and A288187 only the counts for graphs that are one square wide have formulas for regions, edges, and vertices (see A306302, A331757, A331755). For width 2 there are six such sequences (A331766, A331765, A331763; A333279, A333280, A333281). It would be nice to have a formula for any one of them.
See A333279 for illustrations.

Crossrefs

Extensions

a(10) and beyond from Lars Blomberg, May 23 2021

A333281 Column 2 of triangle in A288180.

Original entry on oeis.org

13, 37, 121, 265, 587, 1019, 1797, 2823, 4369, 6257, 9001, 12289, 16775, 21905, 28383, 35901, 45463, 56119, 69351, 84167, 101687, 120869, 143777, 168873, 198191, 229771, 266015, 305379, 350673, 399035, 454243, 513619, 579787, 649899, 727927, 810907, 903581
Offset: 1

Views

Author

Keywords

Comments

For the graphs defined in A331452 and A288187 only the counts for graphs that are one square wide have formulas for regions, edges, and vertices (see A306302, A331757, A331755). For width 2 there are six such sequences (A331766, A331765, A331763; A333279, A333280, A333281). It would be nice to have a formula for any one of them.
See A333279 for illustrations.

Crossrefs

Extensions

a(10) and beyond from Lars Blomberg, May 23 2021
Showing 1-10 of 16 results. Next