A288187
Triangle read by rows: T(n,m) (n >= m >= 1) = number of chambers (or regions) formed by drawing the line segments connecting any two of the (n+1) X (m+1) lattice points in an n X m lattice polygon.
Original entry on oeis.org
4, 16, 56, 46, 176, 520, 104, 388, 1152, 2584, 214, 822, 2502, 5700, 12368, 380, 1452, 4392, 9944, 21504, 37400, 648, 2516, 7644, 17380, 37572, 65810, 115532, 1028, 3952, 12120, 27572, 59784, 105128, 184442, 294040, 1562, 6060, 18476, 42066, 91654, 161352, 282754, 450864, 690816
Offset: 1
The diagonals of the 1 X 1 lattice polygon, i.e. the square, cut it into 4 triangles. Therefore T(1,1)=4.
Triangle begins
4,
16, 56,
46, 176, 520,
104, 388, 1152, 2584,
214, 822, 2502, 5700, 12368,
...
- Lars Blomberg, Table of n, a(n) for n = 1..325 (The first 25 rows)
- Lars Blomberg, Colored illustration for 3 x 3
- Lars Blomberg, Colored illustration for 4 X 4
- Lars Blomberg, Colored illustration for 5 X 3
- Lars Blomberg, Colored illustration for 5 X 5
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Huntington Tracy Hall, Counterexamples in Discrete Geometry. Dissertation, Department of Mathematics, University of California Berkeley, Fall 2004.
- Serkan Hosten, Diane Maclagan, Bernd Sturmfels, Supernormal Vector Configurations, arXiv:math/0105036 [math.CO], 4 May 2001.
- Marc E. Pfetsch, Günter M. Ziegler, Large Chambers in a Lattice Polygon (Notes), March 28, 2001, December 13, 2004.
- Marc E. Pfetsch, Günter M. Ziegler, Large Chambers in a Lattice Polygon (Notes), March 28, 2001, December 13, 2004. [Cached copy, with permission]
- Hugo Pfoertner, Illustrations of Chamber Complexes up to 5 X 5.
If the initial points are arranged around a circle rather than a square we get
A006533 and
A007678.
T(3,3) corrected and rows for n=4..9 added by
Max Alekseyev, Apr 05 2019.
A288180
Number of intersection points formed by drawing the line segments connecting any two lattice points of an n X m convex lattice polygon written as triangle T(n,m), n >= 1, 1 <= m <= n.
Original entry on oeis.org
5, 13, 37, 35, 121, 353, 75, 265, 771, 1761, 159, 587, 1755, 4039, 8917, 275, 1019, 3075, 7035, 15419, 26773, 477, 1797, 5469, 12495, 27229, 47685, 84497, 755, 2823, 8693, 19831, 43333, 76357, 135075, 215545, 1163, 4369, 13301, 30333, 66699, 117719, 207643, 331233, 508613
Offset: 1
Triangle starts with:
n=1: 5,
n=2: 13, 37,
n=3: 35, 121, 353,
n=4: 75, 265, 771, 1761,
n=5: 159, 587, 1755, 4039, 8917,
n=6: 275, 1019, 3075, 7035, 15419, 26773,
n=7: 477, 1797, 5469, 12495, 27229, 47685, 84497,
n=8: 755, 2823, 8693, 19831, 43333, 76357, 135075, 215545,
n=9: 1163, 4369, 13301, 30333, 66699, 117719, 207643, 331233, 508613,
...
- For references and links see A288177.
The main diagonal T(n,n) is
A343993.
Original entry on oeis.org
16, 56, 176, 388, 822, 1452, 2516, 3952, 6060, 8736, 12492, 17040, 23102, 30280, 39234, 49688, 62730, 77556, 95642, 115992, 139874, 166560, 197992, 232600, 272574, 316460, 366390, 420792, 482748, 549516, 624962, 706436, 796766, 893844, 1001074, 1115428
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..200
- Lars Blomberg, Colored illustration of a(1)
- Lars Blomberg, Colored illustration of a(2)
- Lars Blomberg, Colored illustration of a(3)
- Lars Blomberg, Colored illustration of a(4)
- Lars Blomberg, Colored illustration of a(5)
- Lars Blomberg, Colored illustration of a(6)
- Lars Blomberg, Colored illustration of a(7)
- Lars Blomberg, Colored illustration of a(8)
- Lars Blomberg, Colored illustration of a(9)
- Hugo Pfoertner, Illustrations of Chamber Complexes up to 5 X 5.
Original entry on oeis.org
13, 37, 121, 265, 587, 1019, 1797, 2823, 4369, 6257, 9001, 12289, 16775, 21905, 28383, 35901, 45463, 56119, 69351, 84167, 101687, 120869, 143777, 168873, 198191, 229771, 266015, 305379, 350673, 399035, 454243, 513619, 579787, 649899, 727927, 810907, 903581
Offset: 1
A333278
Triangle read by rows: T(n,m) (n >= m >= 1) = number of edges in the graph formed by drawing the line segments connecting any two of the (n+1) X (m+1) lattice points in an n X m grid of squares.
Original entry on oeis.org
8, 28, 92, 80, 296, 872, 178, 652, 1922, 4344, 372, 1408, 4256, 9738, 21284, 654, 2470, 7466, 16978, 36922, 64172, 1124, 4312, 13112, 29874, 64800, 113494, 200028, 1782, 6774, 20812, 47402, 103116, 181484, 319516, 509584, 2724, 10428, 31776, 72398, 158352, 279070, 490396, 782096, 1199428
Offset: 1
Triangle begins:
8,
28, 92,
80, 296, 872,
178, 652, 1922, 4344,
372, 1408, 4256, 9738, 21284,
654, 2470, 7466, 16978, 36922, 64172,
...
Showing 1-5 of 5 results.
Comments