cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 98 results. Next

A336731 Three-column table read by rows: row n gives [number of triangle-triangle, triangle-quadrilateral, quadrilateral-quadrilateral] contacts for a row of n adjacent congruent rectangles divided by drawing diagonals of all possible rectangles (cf. A331452).

Original entry on oeis.org

4, 0, 0, 14, 8, 0, 20, 48, 4, 60, 80, 28, 68, 224, 68, 148, 368, 124, 224, 616, 268, 336, 1008, 420, 384, 1672, 648, 712, 2208, 972, 972, 3120, 1464, 1300, 4304, 1996, 1496, 6040, 2788, 2044, 7936, 3580, 2612, 10224, 4672, 3540, 12656, 5980, 4224, 16104, 7676, 5484, 19648, 9500
Offset: 1

Views

Author

Scott R. Shannon, Aug 02 2020

Keywords

Comments

For a row of n adjacent rectangles the only polygons formed when dividing all possible rectangles along their diagonals are 3-gons (triangles) and 4-gons (quadrilaterals). Hence the only possible edge-sharing contacts are 3-gons with 3-gons, 3-gons with 4-gons, and 4-gons with 4-gons. This sequence lists the number of these three possible combinations for a row of n adjacent rectangles. Note that the edges along the outside of the n adjacent rectangles are not counted as they are only in one n-gon.
These are graphs T(1,n) described in A331452. - N. J. A. Sloane, Aug 03 2020

Examples

			a(1) = 4, a(2) = 0, a(3) = 0. A single rectangle divided along its diagonals consists of four 3-gons, four edges, and no 4-gons. Therefore there are only four 3-gon-to-3-gon contacts. See the link image for n = 1.
a(4) = 14, a(5) = 8, a(6) = 0. Two adjacent rectangles divided along all diagonals consists of fourteen 3-gons and two 4-gons. The two 4-gons are separated and thus share all their edges, eight in total, with 3-gons. There are fourteen pairs of 3-gon-to-3-gon contacts. See the link image for n = 2.
a(7) = 20, a(8) = 48, a(9) = 4. Three adjacent rectangles divided along all diagonals consists of thirty-two 3-gons and fourteen 4-gons. There are two groups of three adjacent 4-gons, so there are four 4-gons-to-4-gon contacts. These, along with the other 4-gons, share 48 edges with 3-gons. There are also twenty 3-gon-to-3-gon contacts. See the link image for n = 3.
.
The table begins:
4,0,0;
14,8,0;
20,48,4;
60,80,28;
68,224,68;
148,368,124;
224,616,268;
336,1008,420;
384,1672,648;
712,2208,972;
972,3120,1464;
1300,4304,1996;
1496,6040,2788;
2044,7936,3580;
2612,10224,4672;
3540,12656,5980;
4224,16104,7676;
5484,19648,9500;
6568,24216,11936;
7836,29616,14468;
See A306302 for a count of the regions and images for other values of n.
		

Crossrefs

Formula

Sum of row t = A331757(t) - 2(t + 1).

A007678 Number of regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

This sequence and A006533 are two equivalent ways of presenting the same sequence.
A quasipolynomial of order 2520. - Charles R Greathouse IV, Jan 15 2013
Also the circuit rank of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
This sequence only counts polygons, in contrast to A006533 which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore a(n) = A006533(n) - n. See also A006561 which counts the intersection points, and A350000 which considers iterated "cutting along diagonals". - M. F. Hasler, Dec 13 2021
The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - Mohammed Yaseen, Nov 05 2022

References

  • Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
  • C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001006, A054726, A006533, A006561, A006600, A007569 (number of vertices), A006522, A135565 (number of line segments).
A062361 gives number of triangles, A331450 and A331451 give distribution of polygons by number of sides.
A333654, A335614, A335646, A337330 give the number of internal n-gon to k-gon contacts for n>=3, k>=n.
A187781 gives number of distinct regions.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n]; Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr,x,fn,cn,fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0,nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
    
  • PARI
    apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
    
  • Python
    def d(n,m): return not n % m
    def A007678(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021

Formula

For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - Jon Perry, Jul 08 2003
For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - Graeme McRae, Dec 24 2004
a(n) = A006533(n) - n. - T. D. Noe, Dec 23 2006
For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - Gary W. Adamson, Aug 02 2011
a(n) = A135565(n) - A007569(n) + 1. - Max Alekseyev
See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - N. J. A. Sloane, Jan 23 2020

Extensions

More terms from Graeme McRae, Dec 26 2004
a(1) = a(2) = 0 prepended by Max Alekseyev, Dec 01 2011

A115004 a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).

Original entry on oeis.org

1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Comments

Also (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a square of grid points with side length n. Diagonal of triangle A320541. - Hugo Pfoertner, Oct 22 2018
From Chai Wah Wu, Aug 18 2021: (Start)
Theorem: a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i).
Proof: Since gcd(n,n) = 1 if and only if n = 1, Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + Sum_{i=1..n, j=1..n, gcd(i,j)=1, (i,j) <> (1,1)} (n+1-i)*(n+1-j)
= n^2 + Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{j=2..n, i=1..j, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + 2*Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j), i.e., the diagonal is not double-counted.
This is equal to n^2 + 2*Sum_{i=2..n, j is a totative of i} (n+1-i)*(n+1-j). Since Sum_{j is a totative of i} 1 = phi(i) and for i > 1, Sum_{j is a totative of i} j = i*phi(i)/2, the conclusion follows.
Similar argument holds for corresponding formulas for A088658, A114043, A114146, A115005, etc.
(End)

Crossrefs

The following eight sequences are all essentially the same. The simplest is the present sequence, A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Main diagonal of array in A114999.

Programs

  • Maple
    A115004 := proc(n)
        local a,b,r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a,b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    seq(A115004(n),n=1..30); # R. J. Mathar, Jul 20 2017
  • Mathematica
    a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:
                    r+=(n + 1 - a)*(n + 1 - b)
        return r
    print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
    
  • Python
    from sympy import totient
    def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 15 2021
    

Formula

a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
As n -> oo, a(n) ~ (3/2)*n^4/Pi^2. This follows from Max Alekseyev's formula in A114043. - N. J. A. Sloane, Jul 03 2020
a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 15 2021

A007569 Number of nodes in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 42, 57, 135, 171, 341, 313, 728, 771, 1380, 1393, 2397, 1855, 3895, 3861, 6006, 5963, 8878, 7321, 12675, 12507, 17577, 17277, 23780, 16831, 31496, 30945, 40953, 40291, 52395, 47017, 66082, 65019, 82290, 80921, 101311, 84883, 123453, 121485
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

I.e., vertex count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
Also the circumference of the n-polygon diagonal intersection graph (since these graphs are Hamiltonian). - Eric W. Weisstein, Mar 08 2018
a(n) = n + sum of row n of triangle A292105. - N. J. A. Sloane, Jun 01 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006561, A007678 (regions), A292105.
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, n, n + Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A007569(n)=A006561(n)+n}, [1..44]) \\ M. F. Hasler, Aug 06 2021
  • Python
    def d(n,m): return not n % m
    def A007569(n): return 2 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 + 18*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
    

Formula

a(n) = A006561(n)+n. - T. D. Noe, Dec 23 2006
If n is odd, a(n) = binomial(n,4) + n. - N. J. A. Sloane, Aug 30 2021

A306302 Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).

Original entry on oeis.org

0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
Offset: 0

Views

Author

Paarth Jain, Feb 05 2019

Keywords

Comments

Assuming that the rectangles have vertices at (k,0) and (k,1), k=0..n, the projective map (x,y) -> ((1-y)/(x+1),y/(x+1)) maps their partition to the partition of the right isosceles triangle described by Alekseyev et al. (2015), for which Theorem 13 gives the number of regions, line segments, and intersection points. - Max Alekseyev, Apr 10 2019
The figure is made up of A324042 triangles and A324043 quadrilaterals. - N. J. A. Sloane, Mar 03 2020

Crossrefs

See A331755 for the number of vertices, A331757 for the number of edges.
A column of A288187. See A288177 for additional references.
Also a column of A331452 and A356790.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    # Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1:  First define z(n) = A115004
    z := proc(n)
        local a, b, r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a, b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    a := n-> z(n)+n^2+2*n;
    [seq(a(n), n=1..50)];
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[0] = 0;
    a[n_] := z[n] + n^2 + 2n;
    a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from sympy import totient
    def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = n + (A114043(n+1) - 1)/2, conjectured by N. J. A. Sloane, Feb 07 2019; proved by Max Alekseyev, Apr 10 2019
a(n) = n + A115005(n+1) = n + A141255(n+1)/2. - Max Alekseyev, Apr 10 2019
a(n) = A324042(n) + A324043(n). - Jinyuan Wang, Mar 19 2020
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n. - N. J. A. Sloane, Apr 11 2020
a(n) = 2n(n+1) + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

a(6)-a(20) from Robert Israel, Feb 07 2019
Edited and more terms added by Max Alekseyev, Apr 10 2019
a(0) added by N. J. A. Sloane, Feb 04 2020

A006561 Number of intersections of diagonals in the interior of a regular n-gon.

Original entry on oeis.org

0, 0, 0, 1, 5, 13, 35, 49, 126, 161, 330, 301, 715, 757, 1365, 1377, 2380, 1837, 3876, 3841, 5985, 5941, 8855, 7297, 12650, 12481, 17550, 17249, 23751, 16801, 31465, 30913, 40920, 40257, 52360, 46981, 66045, 64981, 82251, 80881, 101270, 84841, 123410, 121441
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
See also A101363, A292104, A292105.
See A290447 for an analogous problem on a line.

Programs

  • Maple
    delta:=(m,n) -> if (n mod m) = 0 then 1 else 0; fi;
    f:=proc(n) global delta;
    if n <= 2 then 0 else \
    binomial(n,4)  \
    + (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24 \
    - (3*n/2)*delta(4,n) \
    + (-45*n^2 + 262*n)*delta(6,n)/6  \
    + 42*n*delta(12,n) \
    + 60*n*delta(18,n) \
    + 35*n*delta(24,n) \
    - 38*n*delta(30,n) \
    - 82*n*delta(42,n) \
    - 330*n*delta(60,n) \
    - 144*n*delta(84,n) \
    - 96*n*delta(90,n) \
    - 144*n*delta(120,n) \
    - 96*n*delta(210,n); fi; end;
    [seq(f(n),n=1..100)]; # N. J. A. Sloane, Aug 09 2017
  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, 0, Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A006561(n)=binomial(n,4)+if(n%2==0, (n>2) + (-5*n^2+45*n-70)*n/24 + vecsum([t[2] | t<-[4,6,12,18,24,30,42,60,84,90,120,210;-3/2,(262-45*n)/6,42,60,35,-38,-82,-330,-144,-96,-144,-96], n%t[1]==0])*n)}, [1..44]) \\ M. F. Hasler, Aug 23 2017, edited Aug 06 2021
    
  • Python
    def d(n,m): return not n % m
    def A006561(n): return 0 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 - 6*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021

Formula

Let delta(m,n) = 1 if m divides n, otherwise 0.
For n >= 3, a(n) = binomial(n,4) + (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24
- (3*n/2)*delta(4,n) + (-45*n^2 + 262*n)*delta(6,n)/6 + 42*n*delta(12,n)
+ 60*n*delta(18,n) + 35*n*delta(24,n) - 38*n*delta(30,n)
- 82*n*delta(42,n) - 330*n*delta(60,n) - 144*n*delta(84,n)
- 96*n*delta(90,n) - 144*n*delta(120,n) - 96*n*delta(210,n). [Poonen and Rubinstein, Theorem 1] - N. J. A. Sloane, Aug 09 2017
For odd n, a(n) = binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24, see A053126. For even n, use this formula, but then subtract 2 for every 3-crossing, subtract 5 for every 4-crossing, subtract 9 for every 5-crossing, etc. The number to be subtracted for a d-crossing is (d-1)*(d-2)/2. - Graeme McRae, Dec 26 2004
a(n) = A007569(n) - n. - T. D. Noe, Dec 23 2006
a(2n+5) = A053126(n+4). - Philippe Deléham, Jun 07 2013

A290447 Consider n equally spaced points along a line and join every pair of points by a semicircle above the line; a(n) is the number of intersection points.

Original entry on oeis.org

0, 0, 0, 1, 5, 15, 35, 70, 124, 200, 300, 445, 627, 875, 1189, 1564, 2006, 2568, 3225, 4035, 4972, 6030, 7250, 8701, 10323, 12156, 14235, 16554, 19124, 22072, 25250, 28863, 32827, 37166, 41949, 47142, 52653, 58794, 65503, 72741, 80437
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2017

Keywords

Comments

Only intersection points above the line are counted.
a(n) <= binomial(n,4) (A000332), since that is the number of pairs of intersecting semicircles. See A290461 for the differences.
The first time a triple intersection occurs is for n=9. Two fourfold intersections occur for n=13. - Torsten Sillke, Jul 27 2017
If the line is the x-axis and the two semicircles are for (x_1,0),(x_2,0) and (x_3,0),(x_4,0) (with x_1 < x_2, x_3 < x_4, and x_1 < x_3) then they intersect if and only if x_1 < x_3 < x_2 < x_4, and the intersection point has coordinates (x,y) with x=(x_3*x_4 - x_1*x_2) / (x_3 + x_4 - x_1 - x_2) and y^2 = (x_3-x_1)*(x_4-x_1)*(x_2-x_3)*(x_4-x_2) / (x_3 + x_4 - x_1 - x_2)^2. This allows identification of distinct (and duplicate) intersection points using only rational arithmetic. - David Applegate, Aug 07 2017
Suppose x_i are integers in the range 0 <= x_i < n. Then (x,y) is an intersection point if and only if (n-1-x,y) is an intersection point. Suppose x_4 < n-1. If (x,y) is an intersection point, then (i+x,y) is an intersection point for i = 1,..,n-1-x_4. - Chai Wah Wu, Aug 09 2017

References

  • Torsten Sillke, email to N. J. A. Sloane, Jul 27 2017 (giving values for a(1)-a(13)).

Crossrefs

See A006561 for an analogous problem on a circle.
See A290865, A290866, A290867, A290876, A332723 for further properties of these configurations.

Programs

  • PARI
    A290447(n,U=[])={for(A=1,n-3,for(C=A+1,n-2,for(B=C+1,n-1,for(D=B+1,n,U=setunion(U,[[(C*D-A*B)/(C+D-A-B),(C-A)*(D-A)*(C-B)*(D-B)/(C+D-A-B)^2]])))));#U} \\ M. F. Hasler, Aug 07 2017
    
  • Python
    from itertools import combinations
    from fractions import Fraction
    def A290447(n):
        p,p2 = set(), set()
        for b,c,d in combinations(range(1,n),3):
            e = b + d - c
            f1, f2, g = Fraction(b*d,e), Fraction(b*d*(c-b)*(d-c),e**2), (n-1)*e - 2*b*d
            for i in range(n-d):
                if 2*i*e < g:
                    p2.add((i+f1, f2))
                elif 2*i*e == g:
                    p.add(f2)
                else:
                    break
        return len(p)+2*len(p2) # Chai Wah Wu, Aug 08 2017

Extensions

More terms from David Applegate, Aug 07 2017

A135565 Number of line segments in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 1, 3, 8, 20, 42, 91, 136, 288, 390, 715, 756, 1508, 1722, 2835, 3088, 4896, 4320, 7923, 8360, 12180, 12782, 17963, 16344, 25600, 26494, 35451, 36456, 47908, 38310, 63395, 64800, 82368, 84082, 105315, 99972, 132756, 135014, 165243, 167720
Offset: 1

Views

Author

Keywords

Comments

A line segment (or edge) is considered to end at any vertex where two or more chords meet.
I.e., edge count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_, n_] := Boole[Mod[n, m] == 0];
    A007569[n_] :=
    If[n < 4, n,
      n + Binomial[n, 4] + del[2, n] (-5 n^3 + 45 n^2 - 70 n + 24)/24 -
       del[4, n] (3 n/2) + del[6, n] (-45 n^2 + 262 n)/6 +
       del[12, n]*42 n + del[18, n]*60 n + del[24, n]*35 n -
       del[30, n]*38 n - del[42, n]*82 n - del[60, n]*330 n -
       del[84, n]*144 n - del[90, n]*96 n - del[120, n]*144 n -
       del[210, n]*96 n];
    A007678[n_] :=
      If[n < 3,
       0, (n^4 - 6 n^3 + 23 n^2 - 42 n + 24)/24 +
        del[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - del[4, n] (3 n/4) +
        del[6, n] (-53 n^2 + 310 n)/12 + del[12, n] (49 n/2) +
        del[18, n]*32 n + del[24, n]*19 n - del[30, n]*36 n -
        del[42, n]*50 n - del[60, n]*190 n - del[84, n]*78 n -
        del[90, n]*48 n - del[120, n]*78 n - del[210, n]*48 n];
    a[n_] := A007569[n] + A007678[n] - 1;
    Array[a, 40] (* Jean-François Alcover, Sep 07 2017, after Max Alekseyev, using T. D. Noe's code for A007569 and A007678 *)

Formula

a(n) = A007569(n) + A007678(n) - 1. - Max Alekseyev

A255011 Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.

Original entry on oeis.org

0, 4, 56, 340, 1120, 3264, 6264, 13968, 22904, 38748, 58256, 95656, 120960, 192636, 246824, 323560, 425408, 587964, 682296, 932996, 1061232, 1327524, 1634488, 2049704, 2227672, 2806036, 3275800, 3810088, 4307520, 5298768, 5577096, 6958848, 7586496, 8672520, 9901352
Offset: 0

Views

Author

Johan Westin, Feb 12 2015

Keywords

Comments

There are n+1 points on each side of the square, but that counts the four corners twice, so there are a total of 4n points on the perimeter. - N. J. A. Sloane, Jan 23 2020
a(n) is always divisible by 4, by symmetry. If n is odd, a(n) is divisible by 8.
From Michael De Vlieger, Feb 19-20 2015: (Start)
For n > 0, the vertices of the bounding square generate diametrical bisectors that cross at the center. Thus each diagram has fourfold symmetry.
For n > 0, an orthogonal n X n grid is produced by corresponding horizontal and vertical points on opposite sides.
Terms {1, 3, 9} are not congruent to 0 (mod 8).
Number of edges: {0, 8, 92, 596, 1936, 6020, 11088, 26260, 42144, 72296, 107832, ...}. See A331448. (End)

Examples

			For n = 3, the perimeter of the square contains 12 points:
  * * * *
  *     *
  *     *
  * * * *
Connect each point to every other point with a straight line inside the square. Then count the polygons (or regions) that have formed. There are 340 polygons, so a(3) = 340.
For n = 1, the full picture is:
  *-*
  |X|
  *-*
The lines form four triangular regions, so a(1) = 4.
For n = 0, the square can be regarded as consisting of a single point, producing no lines or polygons, and so a(0) = 0.
		

Crossrefs

Cf. A092098 (triangular analog), A331448 (edges), A331449 (points), A334699 (k-gons).
For the circular analog see A006533, A007678.

Formula

No formula is presently known. - N. J. A. Sloane, Feb 04 2020

Extensions

a(11)-a(29) from Hiroaki Yamanouchi, Feb 23 2015
Offset changed by N. J. A. Sloane, Jan 23 2020

A331765 Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

Original entry on oeis.org

28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1

Views

Author

Keywords

Comments

Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.

Crossrefs

Column 2 of A331454.

Extensions

More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020
Showing 1-10 of 98 results. Next