A336731
Three-column table read by rows: row n gives [number of triangle-triangle, triangle-quadrilateral, quadrilateral-quadrilateral] contacts for a row of n adjacent congruent rectangles divided by drawing diagonals of all possible rectangles (cf. A331452).
Original entry on oeis.org
4, 0, 0, 14, 8, 0, 20, 48, 4, 60, 80, 28, 68, 224, 68, 148, 368, 124, 224, 616, 268, 336, 1008, 420, 384, 1672, 648, 712, 2208, 972, 972, 3120, 1464, 1300, 4304, 1996, 1496, 6040, 2788, 2044, 7936, 3580, 2612, 10224, 4672, 3540, 12656, 5980, 4224, 16104, 7676, 5484, 19648, 9500
Offset: 1
a(1) = 4, a(2) = 0, a(3) = 0. A single rectangle divided along its diagonals consists of four 3-gons, four edges, and no 4-gons. Therefore there are only four 3-gon-to-3-gon contacts. See the link image for n = 1.
a(4) = 14, a(5) = 8, a(6) = 0. Two adjacent rectangles divided along all diagonals consists of fourteen 3-gons and two 4-gons. The two 4-gons are separated and thus share all their edges, eight in total, with 3-gons. There are fourteen pairs of 3-gon-to-3-gon contacts. See the link image for n = 2.
a(7) = 20, a(8) = 48, a(9) = 4. Three adjacent rectangles divided along all diagonals consists of thirty-two 3-gons and fourteen 4-gons. There are two groups of three adjacent 4-gons, so there are four 4-gons-to-4-gon contacts. These, along with the other 4-gons, share 48 edges with 3-gons. There are also twenty 3-gon-to-3-gon contacts. See the link image for n = 3.
.
The table begins:
4,0,0;
14,8,0;
20,48,4;
60,80,28;
68,224,68;
148,368,124;
224,616,268;
336,1008,420;
384,1672,648;
712,2208,972;
972,3120,1464;
1300,4304,1996;
1496,6040,2788;
2044,7936,3580;
2612,10224,4672;
3540,12656,5980;
4224,16104,7676;
5484,19648,9500;
6568,24216,11936;
7836,29616,14468;
See A306302 for a count of the regions and images for other values of n.
A007678
Number of regions in regular n-gon with all diagonals drawn.
Original entry on oeis.org
0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
Offset: 1
- Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
- C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Robert Dougherty-Bliss, First draft of Python program to produce colored drawings of these figures, Github, Feb 09 2020.
- Martin Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
- M. F. Hasler, Interactive illustration of A006561(n) & A006533(n); colored version for n=6 and for n=8.
- Sascha Kurz, m-gons in regular n-gons (in German).
- J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
- Bjorn Poonen and Michael Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11, no. 1 (1998), pp. 135-156; DOI:10.1137/S0895480195281246. [Author's copy]. The latest arXiv version arXiv:math/9508209 has corrected some typos in the published version.
- Bjorn Poonen and Michael Rubinstein, Mathematica programs for these sequences
- J. F. Rigby, Multiple intersections of diagonals of regular polygons, and related topics, Geom. Dedicata 9 (1980), 207-238.
- M. Rubinstein, Drawings for n=4,5,6,...
- Scott R. Shannon, Colored illustration for n = 17
- Scott R. Shannon, Colored illustration for n = 18
- Scott R. Shannon, Colored illustration for n = 19
- Scott R. Shannon, Colored illustration for n = 23
- Scott R. Shannon, Colored illustration for n = 27
- Scott R. Shannon, Colored illustration for n = 40
- Scott R. Shannon, Colored illustration for n = 41 (1st version)
- Scott R. Shannon, Colored illustration for n = 41 (2nd version)
- Scott R. Shannon, Colored illustration for n = 41 (3rd version). This variation has coloring based on the number of edges of the polygon: red = 3-gon, orange = 4-gon, yellow = 5-gon, light-green = 6-gon etc.
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 18.
- N. J. A. Sloane, Summary table for vertices and regions in regular n-gon with all chords drawn, for n = 3..19. [V = total number of vertices (A007569), V_i (i>=2) = number of vertices where i lines cross (A292105, A292104, A101363); R = total number of cells or regions (A007678), R_i (i>=3) = number of regions with i edges (A331450, A062361, A067151).]
- Prasad Balakrishnan Warrier, The physiognomy of the Erdős-Szekeres conjecture (happy ending problem), Math. Student (Indian Math. Soc., 2024) Vol. 93, Nos. 3-4, 28-48.
- Eric Weisstein's World of Mathematics, Circuit Rank
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Eric Weisstein's World of Mathematics, Regular Polygon Division by Diagonals
- Sequences formed by drawing all diagonals in regular polygon
- Sequences related to chord diagrams
A187781 gives number of distinct regions.
-
del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n]; Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
-
/* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr,x,fn,cn,fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0,nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
-
apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
-
def d(n,m): return not n % m
def A007678(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
A115004
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
Original entry on oeis.org
1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
Offset: 1
- Ray Chandler, Table of n, a(n) for n = 1..1000
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, JIS 12 (2009) 09.5.5.
- R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021. (Includes this sequence)
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
-
A115004 := proc(n)
local a,b,r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a,b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
seq(A115004(n),n=1..30); # R. J. Mathar, Jul 20 2017
-
a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
-
a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
-
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:
r+=(n + 1 - a)*(n + 1 - b)
return r
print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
-
from sympy import totient
def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 15 2021
A007569
Number of nodes in regular n-gon with all diagonals drawn.
Original entry on oeis.org
1, 2, 3, 5, 10, 19, 42, 57, 135, 171, 341, 313, 728, 771, 1380, 1393, 2397, 1855, 3895, 3861, 6006, 5963, 8878, 7321, 12675, 12507, 17577, 17277, 23780, 16831, 31496, 30945, 40953, 40291, 52395, 47017, 66082, 65019, 82290, 80921, 101311, 84883, 123453, 121485
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..1000
- Sascha Kurz, m-gons in regular n-gons
- B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006; arXiv version, which has fewer typos than the SIAM version.
- B. Poonen and M. Rubinstein, Mathematica programs for these sequences
- M. Rubinstein, Drawings for n=4,5,6,...
- N. J. A. Sloane, Summary table for vertices and regions in regular n-gon with all chords drawn, for n = 3..19. [V = total number of vertices (A007569), V_i (i>=2) = number of vertices where i lines cross (A292105, A292104, A101363); R = total number of cells or regions (A007678), R_i (i>=3) = number of regions with i edges (A331450, A062361, A067151).]
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- Eric Weisstein's World of Mathematics, Graph Circumference
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Eric Weisstein's World of Mathematics, Vertex Count
- Robert G. Wilson v, Illustration of a(10)
- Sequences formed by drawing all diagonals in regular polygon
-
del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, n, n + Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
-
apply( {A007569(n)=A006561(n)+n}, [1..44]) \\ M. F. Hasler, Aug 06 2021
-
def d(n,m): return not n % m
def A007569(n): return 2 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 + 18*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
A306302
Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).
Original entry on oeis.org
0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
Offset: 0
- Jinyuan Wang, Table of n, a(n) for n = 0..1000
- Max Alekseyev, Illustration for n = 3.
- M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions, SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090.
- Lars Blomberg, Scott R. Shannon and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
- Robert Israel, Maple program, Feb 07 2019
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- Scott R. Shannon, Colored illustration for T(1,1)
- Scott R. Shannon, Colored illustration for T(2,1)
- Scott R. Shannon, Colored illustration for T(3,1)
- Scott R. Shannon, Colored illustration for T(4,1)
- Scott R. Shannon, Colored illustration for T(5,1)
- Scott R. Shannon, Colored illustration for T(6,1)
- Scott R. Shannon, Colored illustration for T(7,1)
- Scott R. Shannon, Colored illustration for T(8,1)
- Scott R. Shannon, Colored illustration for T(9,1)
- Scott R. Shannon, Colored illustration for T(10,1)
- Scott R. Shannon, Colored illustration for T(11,1)
- Scott R. Shannon, Colored illustration for T(12,1)
- Scott R. Shannon, Colored illustration for T(13,1)
- Scott R. Shannon, Colored illustration for T(14,1)
- Scott R. Shannon, Colored illustration for T(15,1)
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Index entries for sequences related to stained glass windows
See
A331755 for the number of vertices,
A331757 for the number of edges.
-
# Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1: First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
a := n-> z(n)+n^2+2*n;
[seq(a(n), n=1..50)];
-
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[0] = 0;
a[n_] := z[n] + n^2 + 2n;
a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
-
from sympy import totient
def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
A006561
Number of intersections of diagonals in the interior of a regular n-gon.
Original entry on oeis.org
0, 0, 0, 1, 5, 13, 35, 49, 126, 161, 330, 301, 715, 757, 1365, 1377, 2380, 1837, 3876, 3841, 5985, 5941, 8855, 7297, 12650, 12481, 17550, 17249, 23751, 16801, 31465, 30913, 40920, 40257, 52360, 46981, 66045, 64981, 82251, 80881, 101270, 84841, 123410, 121441
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
- Johan Gielis and Ilia Tavkhelidze, The general case of cutting of GML surfaces and bodies, arXiv:1904.01414 [math.GM], 2019.
- Jessica Gonzalez, Illustration of a(4) through a(9).
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
- M. F. Hasler, Interactive illustration of A006561(n), Sep 01 2017. (For colored versions see A006533.)
- Sascha Kurz, m-gons in regular n-gons.
- Roger Mansuy, Des croisements pas si faciles à compter, La Recherche, 547, Mai 2019 (in French).
- B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, No.1 (1998) pp. 135-156; DOI:10.1137/S0895480195281246. [Copy on B. Poonen's web site.]
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]: revision from 2006 has a few typos from the published version corrected.
- B. Poonen and M. Rubinstein, Mathematica programs for A006561 and related sequences.
- M. Rubinstein, Drawings for n=4,5,6,....
- N. J. A. Sloane, Illustrations of a(8) and a(9).
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 18.
- Robert G. Wilson v, Illustration of a(10)
- Index entry for Sequences formed by drawing all diagonals in regular polygon
See
A290447 for an analogous problem on a line.
-
delta:=(m,n) -> if (n mod m) = 0 then 1 else 0; fi;
f:=proc(n) global delta;
if n <= 2 then 0 else \
binomial(n,4) \
+ (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24 \
- (3*n/2)*delta(4,n) \
+ (-45*n^2 + 262*n)*delta(6,n)/6 \
+ 42*n*delta(12,n) \
+ 60*n*delta(18,n) \
+ 35*n*delta(24,n) \
- 38*n*delta(30,n) \
- 82*n*delta(42,n) \
- 330*n*delta(60,n) \
- 144*n*delta(84,n) \
- 96*n*delta(90,n) \
- 144*n*delta(120,n) \
- 96*n*delta(210,n); fi; end;
[seq(f(n),n=1..100)]; # N. J. A. Sloane, Aug 09 2017
-
del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, 0, Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
-
apply( {A006561(n)=binomial(n,4)+if(n%2==0, (n>2) + (-5*n^2+45*n-70)*n/24 + vecsum([t[2] | t<-[4,6,12,18,24,30,42,60,84,90,120,210;-3/2,(262-45*n)/6,42,60,35,-38,-82,-330,-144,-96,-144,-96], n%t[1]==0])*n)}, [1..44]) \\ M. F. Hasler, Aug 23 2017, edited Aug 06 2021
-
def d(n,m): return not n % m
def A006561(n): return 0 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 - 6*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
A290447
Consider n equally spaced points along a line and join every pair of points by a semicircle above the line; a(n) is the number of intersection points.
Original entry on oeis.org
0, 0, 0, 1, 5, 15, 35, 70, 124, 200, 300, 445, 627, 875, 1189, 1564, 2006, 2568, 3225, 4035, 4972, 6030, 7250, 8701, 10323, 12156, 14235, 16554, 19124, 22072, 25250, 28863, 32827, 37166, 41949, 47142, 52653, 58794, 65503, 72741, 80437
Offset: 1
- Torsten Sillke, email to N. J. A. Sloane, Jul 27 2017 (giving values for a(1)-a(13)).
- David Applegate, Table of n, a(n) for n = 1..500
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
- M. F. Hasler, Illustration for a(9) = 124. (First instance where a triple intersection occurs, whence a(9) < binomial(9,4).)
- M. F. Hasler, Illustration for a(9) = 124 [Another version, showing baseline]
- M. F. Hasler, Interactive web page for drawing the illustration for a(n).
- Torsten Sillke, Illustration for a(13) = 627
- N. J. A. Sloane, Illustration for a(5) = 5.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- Zahlenjagd, Winter 2010 Problem (asks for a(10)).
See
A006561 for an analogous problem on a circle.
-
A290447(n,U=[])={for(A=1,n-3,for(C=A+1,n-2,for(B=C+1,n-1,for(D=B+1,n,U=setunion(U,[[(C*D-A*B)/(C+D-A-B),(C-A)*(D-A)*(C-B)*(D-B)/(C+D-A-B)^2]])))));#U} \\ M. F. Hasler, Aug 07 2017
-
from itertools import combinations
from fractions import Fraction
def A290447(n):
p,p2 = set(), set()
for b,c,d in combinations(range(1,n),3):
e = b + d - c
f1, f2, g = Fraction(b*d,e), Fraction(b*d*(c-b)*(d-c),e**2), (n-1)*e - 2*b*d
for i in range(n-d):
if 2*i*e < g:
p2.add((i+f1, f2))
elif 2*i*e == g:
p.add(f2)
else:
break
return len(p)+2*len(p2) # Chai Wah Wu, Aug 08 2017
A135565
Number of line segments in regular n-gon with all diagonals drawn.
Original entry on oeis.org
0, 1, 3, 8, 20, 42, 91, 136, 288, 390, 715, 756, 1508, 1722, 2835, 3088, 4896, 4320, 7923, 8360, 12180, 12782, 17963, 16344, 25600, 26494, 35451, 36456, 47908, 38310, 63395, 64800, 82368, 84082, 105315, 99972, 132756, 135014, 165243, 167720
Offset: 1
-
del[m_, n_] := Boole[Mod[n, m] == 0];
A007569[n_] :=
If[n < 4, n,
n + Binomial[n, 4] + del[2, n] (-5 n^3 + 45 n^2 - 70 n + 24)/24 -
del[4, n] (3 n/2) + del[6, n] (-45 n^2 + 262 n)/6 +
del[12, n]*42 n + del[18, n]*60 n + del[24, n]*35 n -
del[30, n]*38 n - del[42, n]*82 n - del[60, n]*330 n -
del[84, n]*144 n - del[90, n]*96 n - del[120, n]*144 n -
del[210, n]*96 n];
A007678[n_] :=
If[n < 3,
0, (n^4 - 6 n^3 + 23 n^2 - 42 n + 24)/24 +
del[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - del[4, n] (3 n/4) +
del[6, n] (-53 n^2 + 310 n)/12 + del[12, n] (49 n/2) +
del[18, n]*32 n + del[24, n]*19 n - del[30, n]*36 n -
del[42, n]*50 n - del[60, n]*190 n - del[84, n]*78 n -
del[90, n]*48 n - del[120, n]*78 n - del[210, n]*48 n];
a[n_] := A007569[n] + A007678[n] - 1;
Array[a, 40] (* Jean-François Alcover, Sep 07 2017, after Max Alekseyev, using T. D. Noe's code for A007569 and A007678 *)
A255011
Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.
Original entry on oeis.org
0, 4, 56, 340, 1120, 3264, 6264, 13968, 22904, 38748, 58256, 95656, 120960, 192636, 246824, 323560, 425408, 587964, 682296, 932996, 1061232, 1327524, 1634488, 2049704, 2227672, 2806036, 3275800, 3810088, 4307520, 5298768, 5577096, 6958848, 7586496, 8672520, 9901352
Offset: 0
For n = 3, the perimeter of the square contains 12 points:
* * * *
* *
* *
* * * *
Connect each point to every other point with a straight line inside the square. Then count the polygons (or regions) that have formed. There are 340 polygons, so a(3) = 340.
For n = 1, the full picture is:
*-*
|X|
*-*
The lines form four triangular regions, so a(1) = 4.
For n = 0, the square can be regarded as consisting of a single point, producing no lines or polygons, and so a(0) = 0.
- Zhao Hui Du, Table of n, a(n) for n = 0..136 (terms 0..52 from Lars Blomberg).
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021); Also on arXiv, arXiv:2009.07918 [math.CO], 2020.
- Michael De Vlieger, Diagrams of A255011(n) for n <= 10
- B. Poonen and M. Rubinstein (1998) The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11(1), pp. 135-156, doi:10.1137/S0895480195281246, arXiv:math.MG/9508209 (has fewer typos than the SIAM version)
- Scott R. Shannon, Colored illustration for a(1)
- Scott R. Shannon, Colored illustration for a(2)
- Scott R. Shannon, Colored illustration for a(3)
- Scott R. Shannon, Colored illustration for a(4)
- Scott R. Shannon, Colored illustration for a(5)
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 10.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
A331765
Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
Offset: 1
Showing 1-10 of 98 results.
Comments