A331460 Irregular triangle read by rows in which row n is the result of iterating the operation f(n) = n/7 if n == 0 (mod 7), otherwise f(n) = 7*(n + ceiling(n/7)), terminating at the first occurrence of 1.
1, 2, 21, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 4, 35, 5, 42, 6, 49, 7, 1, 5, 42, 6, 49, 7, 1, 6, 49, 7, 1, 7, 1, 8, 70, 10, 84, 12, 98, 14, 2, 21, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 9, 77, 11, 91, 13, 105, 15, 126, 18
Offset: 1
Examples
The irregular array T(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1: 1 2: 2 21 3 28 4 35 5 42 6 49 7 1 3: 3 28 4 35 5 42 6 49 7 1 4: 4 35 5 42 6 49 7 1 5: 5 42 6 49 7 1 6: 6 49 7 1 7: 7 1 8: 8 70 10 84 12 98 14 2 21 3 28 4 35 5 42 6 49 ... 9: 9 77 11 91 13 105 15 126 18 147 21 3 28 4 35 5 42 ... 10: 10 84 12 98 14 2 21 3 28 4 35 5 42 6 49 7 1 ... T(8,18) = 1 and T(9,20) = 1.
Links
- T. Ahmed and H. Snevily, Are There an Infinite Number of Collatz Integers?, 2013.
- M. Bruschi, A generalization of the Collatz problem and conjecture, arXiv:0810.5169 [math.NT], 2008.
- W. Carnielli, Some Natural Generalizations Of The Collatz Problem, Applied Mathematics E-Notes, 15 (2015), 197-206.
Programs
-
Mathematica
f[n_] := NestWhileList[If[Mod[#, 7] == 0, #/7, 7 (Floor[#/7] + # + 1)] &, n, # > 1 &]; Flatten[Table[f[n], {n, 10}]]
-
PARI
row(n)=my(N=List([n])); while(n>1, listput(N, n=if(n%7, 7*(n+ceil(n/7)), n/7))); Vec(N)
Formula
T(n,0) = n and T(n,k + 1) = T(n,k)/7 if T(n,k) == 0 (mod 7), 7*(T(n,k) + ceiling(T(n,k)/7)) otherwise, for n >= 1.
Comments