cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331473 Alternating sum of (n+1)*A000108(n+1).

Original entry on oeis.org

1, 3, 12, 44, 166, 626, 2377, 9063, 34695, 133265, 513381, 1982763, 7674937, 29767223, 115655452, 450067268, 1753894162, 6843602438, 26734398172, 104548010228, 409243597192, 1603372802888, 6286998311062, 24670701224714, 96877958811586, 380673221064366
Offset: 0

Views

Author

Paul Barry, Jan 17 2020

Keywords

Comments

Hankel transform is A331474.
Alternating sum of A001791(n+1).

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n+4, n+1)*hypergeom([1, n+5/2, n+3], [n+2, n+4], -4) + (-1)^n*(3*sqrt(5) - 5)/10:
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Jan 18 2020
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k+2,k)); \\ Michel Marcus, Jan 18 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*(k+1)*A000108(k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2*k+2,k).
G.f.: (1 - 2*x - sqrt(1-4*x))/(2*x^2*(1+x)*sqrt(1-4*x)).
a(n) = binomial(2*n+4, n+1)*hypergeom ([1, n+5/2, n+3], [n+2, n+4], -4) + (-1)^n*(3*sqrt(5) - 5)/10. - Peter Luschny, Jan 18 2020
D-finite with recurrence +(n+2)*a(n) +(-5*n-4)*a(n-1) +2*(n-5)*a(n-2) +4*(2*n-1)*a(n-3)=0. - R. J. Mathar, Apr 27 2020