A331479 Table read by rows: row n lists the numbers m such that the first n primes can be partitioned into m subsets all of which have the same sum.
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 1, 3, 1, 2, 4, 5, 1, 3, 1, 2, 4, 1, 3, 1, 2, 4, 1, 7, 1, 2, 1, 3, 1, 2, 4, 5, 1, 3, 1, 2, 4, 1, 3, 1, 2, 4, 5, 8, 1, 3, 9, 1, 2, 4, 5, 8, 1, 3, 1, 2, 4, 7, 1, 3, 1, 2, 4, 1, 3, 1, 2, 4, 8
Offset: 1
Examples
In bin-packing terms, for n=19, the sum of the 19 item sizes, i.e., the sum of the first n primes, is 2 + 3 + ... + 67 = 568, whose divisors begin 1, 2, 4, 8, ...; the bin capacity must be at least 67 (the size of the largest item), and 568/67 < 9, so the number of bins m cannot exceed 8. However, the 19 items cannot be packed into 8 bins: the bin capacity would be 568/8 = 71 (which, as an odd sum, would require that each bin containing only odd-sized items -- i.e., every bin other than the one containing the item of size 2 -- contain an odd number of items, hence at least 3 items, but there are only 19 items in total). So the remaining values of m are 1 (i.e., packing all 19 items in a single bin), 2 (e.g., 568/2 = 284 = 67 + 61 + 59 + 53 + 41 + 3 = 47 + 43 + 37 + 31 + 29 + 23 + 19 + 17 + 13 + 11 + 7 + 5 + 2), and 4 (e.g., 568/4 = 142 = 67 + 61 + 11 + 3 = 59 + 53 + 23 + 7 = 47 + 43 + 37 + 13 + 2 = 41 + 31 + 29 + 19 + 17 + 5), so row 19 consists of the numbers 1, 2, and 4. . Numbers m such that Sum of Divisors m of sum 1st n primes can be n-th 1st n such that partitioned into m n prime primes m <= sum/prime(n) subsets w/same sum -- ----- ------ ----------------- ------------------- 1 2 2 1 1; 2 3 5 1 1; 3 5 10 1, 2 1, 2; 4 7 17 1 1; 5 11 28 1, 2 1, 2; 6 13 41 1 1; 7 17 58 1, 2 1, 2; 8 19 77 1 1; 9 23 100 1, 2, 4 1, 2; 10 29 129 1, 3 1, 3; 11 31 160 1, 2, 4, 5 1, 2, 4; 12 37 197 1 1; 13 41 238 1, 2 1, 2; 14 43 281 1 1; 15 47 328 1, 2, 4 1, 2, 4; 16 53 381 1, 3 1, 3; 17 59 440 1, 2, 4, 5 1, 2, 4, 5; 18 61 501 1, 3 1, 3; 19 67 568 1, 2, 4, 8 1, 2, 4; 20 71 639 1, 3, 9 1, 3; 21 73 712 1, 2, 4, 8 1, 2, 4; 22 79 791 1, 7 1, 7; 23 83 874 1, 2 1, 2; 24 89 963 1, 3, 9 1, 3; 25 97 1060 1, 2, 4, 5, 10 1, 2, 4, 5; 26 101 1161 1, 3, 9 1, 3; 27 103 1264 1, 2, 4, 8 1, 2, 4; 28 107 1371 1, 3 1, 3; 29 109 1480 1, 2, 4, 5, 8, 10 1, 2, 4, 5, 8; 30 113 1593 1, 3, 9 1, 3, 9; 31 127 1720 1, 2, 4, 5, 8, 10 1, 2, 4, 5, 8; 32 131 1851 1, 3 1, 3; 33 137 1988 1, 2, 4, 7, 14 1, 2, 4, 7; 34 139 2127 1, 3 1, 3; 35 149 2276 1, 2, 4 1, 2, 4; 36 151 2427 1, 3 1, 3; 37 157 2584 1, 2, 4, 8 1, 2, 4, 8;
Comments