A331485 Array read by antidiagonals: A(n,k) is the number of nonequivalent nonnegative integer matrices with k columns and any number of nonzero rows with column sums n up to permutation of rows and columns.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 5, 23, 21, 5, 1, 1, 7, 79, 162, 66, 7, 1, 1, 11, 274, 1636, 1338, 192, 11, 1, 1, 15, 1003, 19977, 43686, 10585, 565, 15, 1, 1, 22, 3763, 298416, 2142277, 1178221, 82694, 1579, 22, 1, 1, 30, 14723, 5300296, 149056260, 232984145, 30370346, 612700, 4348, 30, 1
Offset: 0
Examples
Array begins: ============================================================ n\k | 0 1 2 3 4 5 6 ----+------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 2 3 5 7 11 ... 2 | 1 2 7 23 79 274 1003 ... 3 | 1 3 21 162 1636 19977 298416 ... 4 | 1 5 66 1338 43686 2142277 149056260 ... 5 | 1 7 192 10585 1178221 232984145 74676589469 ... 6 | 1 11 565 82694 30370346 23412296767 33463656939910 ... ... The A(2,2) = 7 matrices are: [1 0] [2 0] [1 1] [2 1] [2 0] [1 1] [2 2] [1 0] [0 1] [1 0] [0 1] [0 2] [1 1] [0 1] [0 1] [0 1] [0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..152
Crossrefs
Programs
-
PARI
\\ See A318951 for RowSumMats T(n, k)={RowSumMats(k, n*k, n)} { for(n=0, 7, for(k=0, 6, print1(T(n, k), ", ")); print) }
Formula
A306017(n) = Sum_{d|n} A(n/d, d).
Comments