cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331488 Number of unlabeled lone-child-avoiding rooted trees with n vertices and more than two branches (of the root).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 10, 20, 36, 70, 134, 263, 513, 1022, 2030, 4076, 8203, 16614, 33738, 68833, 140796, 288989, 594621, 1226781, 2536532, 5256303, 10913196, 22700682, 47299699, 98714362, 206323140, 431847121, 905074333, 1899247187, 3990145833, 8392281473
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

Also the number of lone-child-avoiding rooted trees with n vertices and more than two branches.

Examples

			The a(4) = 1 through a(9) = 10 trees:
  (ooo)  (oooo)  (ooooo)   (oooooo)   (ooooooo)    (oooooooo)
                 (oo(oo))  (oo(ooo))  (oo(oooo))   (oo(ooooo))
                           (ooo(oo))  (ooo(ooo))   (ooo(oooo))
                                      (oooo(oo))   (oooo(ooo))
                                      (o(oo)(oo))  (ooooo(oo))
                                      (oo(o(oo)))  (o(oo)(ooo))
                                                   (oo(o(ooo)))
                                                   (oo(oo)(oo))
                                                   (oo(oo(oo)))
                                                   (ooo(o(oo)))
		

Crossrefs

The not necessarily lone-child-avoiding version is A331233.
The Matula-Goebel numbers of these trees are listed by A331490.
A000081 counts unlabeled rooted trees.
A001678 counts lone-child-avoiding rooted trees.
A001679 counts topologically series-reduced rooted trees.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A331489 lists Matula-Goebel numbers of series-reduced rooted trees.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]>2&&FreeQ[#,{_}]&]],{n,10}]

Formula

For n > 1, a(n) = A001679(n) - A001678(n).

Extensions

a(37)-a(38) from Jinyuan Wang, Jun 26 2020
Terminology corrected (lone-child-avoiding, not series-reduced) by Gus Wiseman, May 10 2021