A331502 Decimal expansion of exp(4/9).
1, 5, 5, 9, 6, 2, 3, 4, 9, 7, 6, 0, 6, 7, 8, 0, 7, 1, 5, 5, 3, 3, 7, 0, 9, 2, 8, 6, 9, 7, 9, 4, 7, 1, 1, 8, 6, 3, 9, 4, 8, 2, 4, 0, 1, 1, 4, 2, 2, 1, 4, 2, 3, 5, 4, 3, 9, 0, 2, 7, 8, 4, 3, 1, 5, 4, 3, 5, 6, 3, 8, 5, 0, 1, 3, 3, 1, 0, 6, 3, 2, 6, 4, 2, 7, 5, 8, 1, 6, 1, 2, 4, 9, 2, 9, 9, 4, 0, 1, 5, 4, 2, 9, 1, 6, 9
Offset: 1
Examples
1.55962349760678071553370928697947118639482401142214...
Links
- P. Flajolet, D. E. Knuth, and B. Pittel, The first cycles in an evolving graph, Discrete Mathematics, 75(1-3):167-215, 1989.
- Carlos R. Lucatero, Combinatorial Enumeration of Graphs.
- Index entries for transcendental numbers
Programs
-
Maple
evalf(exp(4/9), 134);
-
Mathematica
RealDigits[Exp[4/9],10,120][[1]] (* Harvey P. Dale, Jun 05 2023 *)
-
PARI
exp(4/9)
Formula
Equals Lim_{n->oo} Pp13(n) / P13(n) = Lim_{n->oo} (3*n)^(2*n) / (binomial((3*n *(3*n-1)/2), n) * n! * 2^n).
Comments