A331503 a(n) is the number of sets modulo n which can be formed by a finite arithmetic sequence.
1, 3, 7, 15, 31, 42, 99, 119, 193, 218, 463, 340, 807, 682, 849, 1087, 1939, 1299, 2775, 1862, 2615, 3050, 5107, 2988, 5681, 5242, 6439, 5656, 10615, 5562, 13083, 9631, 11367, 12362, 14153, 10531, 22719, 17578, 19361, 16050, 31243, 16728, 36207, 24284, 26133
Offset: 1
Keywords
Examples
For n = 3, the a(3) = 7 solutions are {1}; {2}; {3}; {1,2}; {1,3}; {2,3}; {1,2,3}.
Programs
-
Mathematica
Array[#3 + #1 (#2 - 1 - 3 #4 + Sum[#1/GCD[#1, i], {i, #4}]) & @@ Join[{#}, DivisorSigma[{0, 1}, #], {Floor[#/2]}] &, 45] (* Michael De Vlieger, May 04 2020 *)
-
PARI
a(n) = {sigma(n) + n*(numdiv(n) - 1 - 3*(n\2) + sum(i=1, n\2, n/gcd(n,i)))} \\ Andrew Howroyd, May 03 2020
Formula
a(n) = sigma(n) + n*(tau(n) - 1 - 3*floor(n/2) + Sum_{i=1..floor(n/2)} n/gcd(n,i)).