cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331517 a(n) = Sum_{k=0..n} p(n,k) * !k, where p(n,k) = number of partitions of n into k parts and !k = subfactorial of k.

Original entry on oeis.org

1, 0, 1, 3, 13, 59, 336, 2245, 17408, 153124, 1505420, 16342711, 194060616, 2501178199, 34766184181, 518332353130, 8250146291076, 139618375340912, 2503167665128431, 47393482639721484, 944910760664087791, 19787603213440946946, 434229133448518143203
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[IntegerPartitions[n, {k}]] Subfactorial[k], {k, 0, n}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[Sum[Subfactorial[k] x^k/Product[(1 - x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} !k * x^k / Product_{j=1..k} (1 - x^j).
a(n) ~ exp(-1) * n! * (1 + 1/n + 2/n^2 + 5/n^3 + 16/n^4 + 60/n^5 + 253/n^6 + 1180/n^7 + 6023/n^8 + 33306/n^9 + 197719/n^10 + ...), for coefficients see A331826. - Vaclav Kotesovec, Jan 28 2020