A331545 Triangle of constant term of the symmetric q-binomial coefficients.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 0, 4, 0, 8, 0, 4, 0, 1, 1, 1, 4, 8, 12, 12, 8, 4, 1, 1, 1, 0, 5, 0, 18, 0, 18, 0, 5, 0, 1, 1, 1, 5, 13, 24, 32, 32, 24, 13, 5, 1, 1, 1, 0, 6, 0, 33
Offset: 0
Keywords
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 ... ---+---------------- 0 | 1 1 | 1 1 2 | 1 0 1 3 | 1 1 1 1 4 | 1 0 2 0 1 5 | 1 1 2 2 1 1 6 | 1 0 3 0 3 0 1 7 | 1 1 3 5 5 3 1 1 ...
Programs
-
Mathematica
T[ n_, k_] := Coefficient[ QBinomial[ n, k, x^2] / x^(k (n - k)) // FunctionExpand // Expand, x, 0];
-
PARI
{T(n, k) = if( k<0 || k>n, 0, polcoeff( prod(j = 1, k, (x^(n+1-j) - x^(-n-1+j))/(x^j - x^(-j))), 0))};
Comments