cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331545 Triangle of constant term of the symmetric q-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 0, 4, 0, 8, 0, 4, 0, 1, 1, 1, 4, 8, 12, 12, 8, 4, 1, 1, 1, 0, 5, 0, 18, 0, 18, 0, 5, 0, 1, 1, 1, 5, 13, 24, 32, 32, 24, 13, 5, 1, 1, 1, 0, 6, 0, 33
Offset: 0

Views

Author

Michael Somos, Jan 19 2020

Keywords

Comments

Symmetric q-binomial coefficients are based on symmetric q-numbers [n] := (q^n-1/q^n)/(q-1/q).

Examples

			Triangle begins:
  n\k| 0 1 2 3 4 5 6 7  ...
  ---+----------------
   0 | 1
   1 | 1 1
   2 | 1 0 1
   3 | 1 1 1 1
   4 | 1 0 2 0 1
   5 | 1 1 2 2 1 1
   6 | 1 0 3 0 3 0 1
   7 | 1 1 3 5 5 3 1 1
   ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := Coefficient[ QBinomial[ n, k, x^2] / x^(k (n - k)) // FunctionExpand // Expand, x, 0];
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( prod(j = 1, k, (x^(n+1-j) - x^(-n-1+j))/(x^j - x^(-j))), 0))};

Formula

T(2*n, 2*k+1) = 0. T(2*n+1, 3) = A000982(n). T(2*n+1, 5) = A001973(n) if n>=2. T(4*n, 2*n) = A063074(n).