cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331548 15-adic integer x = ...2AA66B44A40E43797853AD13 satisfying x^5 = x; also x^3 = -x; (x^2)^3 = x^2 = A331550; (x^4)^2 = x^4 = A331549.

Original entry on oeis.org

3, 1, 13, 10, 3, 5, 8, 7, 9, 7, 3, 4, 14, 0, 4, 10, 4, 4, 11, 6, 6, 10, 10, 2, 8, 1, 9, 9, 0, 4, 8, 3, 10, 11, 5, 9, 11, 0, 8, 0, 10, 9, 2, 6, 0, 8, 11, 5, 8, 5, 7, 1, 6, 10, 5, 12, 14, 0, 0, 6, 10, 6, 12, 8, 2, 12, 4, 6, 1, 6, 14, 6, 7, 8, 13, 5, 5, 3, 4, 3, 0
Offset: 0

Views

Author

Patrick A. Thomas, Jan 20 2020

Keywords

Comments

The base-15 version of A120817. A, B, C, D, and E are the standard notations for the hexadecimal digits 10, 11, 12, 13, and 14, respectively.
Conjecture: If k is the number of prime factors congruent to 1 (mod 4) of an integer n, then there are exactly k n-adic integers x satisfying x^5 = x, while not satisfying x^h = x for h = 2, 3, or 4. This does not count -x, which also satisfies, in each case. - Patrick A. Thomas, Mar 31 2020

Examples

			x equals the limit of the (n+1) trailing digits of 3^(5^n):
3^(5^0) = (3), 3^(5^1) = 1(13), 3^(5^2) = 1708EB01(D13), ...
x   = ...2AA66B44A40E43797853AD13.
x^2 = ...65762C0520697E8CA1A31469 = A331550.
x^3 = ...C44883AA4AE0AB75769B41DC = -x.
x^4 = ...8978C2E9CE8570624D4BDA86 = A331549.
x^5 = ...2AA66B44A40E43797853AD13 = x.
		

Crossrefs

Programs

  • PARI
    \\ after Paul D. Hanna's program in A120817
    {a(n)=local(b=3, v=[]); for(k=1, n+1, b=b^5%15^k; v=concat(v, (15*b\15^k))); v[n+1]}
    for(k=0,80,print1(a(k),", ")) \\ Hugo Pfoertner, Jan 26 2020
    
  • PARI
    (A331548_vec(n)=Vecrev(digits(lift(Mod(3,15^n)^5^(n-1)),15)))(99) \\ M. F. Hasler, Jan 26 2020

Formula

x = 15-adic lim_{n->infinity} 3^(5^n).