A331570 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of distinct nonzero rows with column sums n and columns in decreasing lexicographic order.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 3, 1, 0, 1, 46, 42, 3, 1, 0, 1, 544, 1900, 268, 5, 1, 0, 1, 7983, 184550, 73028, 1239, 11, 1, 0, 1, 144970, 29724388, 57835569, 2448599, 7278, 13, 1, 0, 1, 3097825, 7137090958, 99940181999, 16550232235, 75497242, 40828, 19, 1
Offset: 0
Examples
Array begins: ============================================================= n\k | 0 1 2 3 4 5 ----+-------------------------------------------------------- 0 | 1 1 0 0 0 0 ... 1 | 1 1 1 1 1 1 ... 2 | 1 1 6 46 544 7983 ... 3 | 1 3 42 1900 184550 29724388 ... 4 | 1 3 268 73028 57835569 99940181999 ... 5 | 1 5 1239 2448599 16550232235 311353753947045 ... 6 | 1 11 7278 75497242 4388476386528 896320470282357104 ... ... The A(2,2) = 6 matrices are: [1 1] [1 0] [1 0] [2 1] [2 0] [1 0] [1 0] [1 1] [0 1] [0 1] [0 2] [1 2] [0 1] [0 1] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, k<=1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
Comments