A331571 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.
1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 8, 23, 0, 0, 1, 1, 16, 290, 184, 0, 0, 1, 1, 32, 4298, 17488, 840, 0, 0, 1, 1, 64, 79143, 2780752, 771305, 0, 0, 0, 1, 1, 128, 1702923, 689187720, 1496866413, 21770070, 0, 0, 0, 1, 1, 256, 42299820, 236477490418, 5261551562405, 585897733896, 328149360, 0, 0, 0, 1
Offset: 0
Examples
Array begins: =============================================================== n\k | 0 1 2 3 4 5 6 ----+---------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 2 4 8 16 32 ... 2 | 1 0 3 23 290 4298 79143 ... 3 | 1 0 0 184 17488 2780752 689187720 ... 4 | 1 0 0 840 771305 1496866413 5261551562405 ... 5 | 1 0 0 0 21770070 585897733896 30607728081550686 ... 6 | 1 0 0 0 328149360 161088785679360 ... ... The A(2,2) = 3 matrices are: [1 1] [1 0] [1 0] [1 0] [1 1] [0 1] [0 1] [0 1] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
Comments