cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331571 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 8, 23, 0, 0, 1, 1, 16, 290, 184, 0, 0, 1, 1, 32, 4298, 17488, 840, 0, 0, 1, 1, 64, 79143, 2780752, 771305, 0, 0, 0, 1, 1, 128, 1702923, 689187720, 1496866413, 21770070, 0, 0, 0, 1, 1, 256, 42299820, 236477490418, 5261551562405, 585897733896, 328149360, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

Examples

			Array begins:
===============================================================
n\k | 0 1 2   3         4               5                 6
----+----------------------------------------------------------
  0 | 1 1 1   1         1               1                 1 ...
  1 | 1 1 2   4         8              16                32 ...
  2 | 1 0 3  23       290            4298             79143 ...
  3 | 1 0 0 184     17488         2780752         689187720 ...
  4 | 1 0 0 840    771305      1496866413     5261551562405 ...
  5 | 1 0 0   0  21770070    585897733896 30607728081550686 ...
  6 | 1 0 0   0 328149360 161088785679360 ...
  ...
The A(2,2) = 3 matrices are:
   [1 1]  [1 0]  [1 0]
   [1 0]  [1 1]  [0 1]
   [0 1]  [0 1]  [1 1]
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A331567(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331569(n, j).
A(n, k) = 0 for k > 0, n > 2^(k-1).
A331653(n) = Sum_{d|n} A(n/d, d).