A331572 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 3, 1, 1, 8, 59, 45, 3, 1, 1, 16, 701, 1987, 271, 5, 1, 1, 32, 10460, 190379, 73567, 1244, 11, 1, 1, 64, 190816, 30474159, 58055460, 2451082, 7289, 13, 1, 1, 128, 4098997, 7287577611, 100171963518, 16557581754, 75511809, 40841, 19, 1
Offset: 0
Examples
Array begins: ========================================================== n\k | 0 1 2 3 4 5 ----+----------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 1 1 2 4 8 16 ... 2 | 1 1 7 59 701 10460 ... 3 | 1 3 45 1987 190379 30474159 ... 4 | 1 3 271 73567 58055460 100171963518 ... 5 | 1 5 1244 2451082 16557581754 311419969572540 ... 6 | 1 11 7289 75511809 4388702900099 ... ... The A(2,2) = 7 matrices are: [1 1] [1 0] [1 0] [2 1] [2 0] [1 0] [2 2] [1 0] [1 1] [0 1] [0 1] [0 2] [1 2] [0 1] [0 1] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
Comments