cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331573 The bottom entry in the forward difference table of the Euler totient function phi for 1..n.

Original entry on oeis.org

1, 0, 1, -2, 5, -14, 39, -102, 247, -558, 1197, -2494, 5167, -10850, 23311, -51132, 113333, -250694, 547871, -1175998, 2475153, -5117486, 10439895, -21142030, 42777735, -86960284, 178221401, -368541508, 767762191, -1606535062, 3365499467, -7038925364, 14671422797, -30450115592
Offset: 1

Views

Author

Robert G. Wilson v, Jan 20 2020

Keywords

Comments

a(2n) is a nonpositive even number while a(2n-1) is an odd positive number.
Abs(a(n)) < abs(a(n+1)) for 1 < n < 8000.

Examples

			a(8) = -102 because:
1     1     2     2     4     2     6     4  (first 8 terms of A000010)
   0     1     0     2    -2     4    -2     (first 7 terms of A057000)
      1    -1     2    -4     6     6
        -2     3    -6    10   -12
            5    -9    16   -22
             -14    25   -38
                 39   -63
                  -102
The first principal right descending diagonal is this sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Differences[ Array[ EulerPhi, n], n -1][[1]]; Array[f, 34] (* or *)
    nmx = 34; Join[ {1}, Differences[ Array[ EulerPhi, nmx], #][[1]] & /@ Range[nmx - 1]]

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*phi(k). - Ridouane Oudra, Aug 21 2021
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A002088(k). - Ridouane Oudra, Oct 02 2022