A331573 The bottom entry in the forward difference table of the Euler totient function phi for 1..n.
1, 0, 1, -2, 5, -14, 39, -102, 247, -558, 1197, -2494, 5167, -10850, 23311, -51132, 113333, -250694, 547871, -1175998, 2475153, -5117486, 10439895, -21142030, 42777735, -86960284, 178221401, -368541508, 767762191, -1606535062, 3365499467, -7038925364, 14671422797, -30450115592
Offset: 1
Keywords
Examples
a(8) = -102 because: 1 1 2 2 4 2 6 4 (first 8 terms of A000010) 0 1 0 2 -2 4 -2 (first 7 terms of A057000) 1 -1 2 -4 6 6 -2 3 -6 10 -12 5 -9 16 -22 -14 25 -38 39 -63 -102 The first principal right descending diagonal is this sequence.
Programs
-
Mathematica
f[n_] := Differences[ Array[ EulerPhi, n], n -1][[1]]; Array[f, 34] (* or *) nmx = 34; Join[ {1}, Differences[ Array[ EulerPhi, nmx], #][[1]] & /@ Range[nmx - 1]]
Formula
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*phi(k). - Ridouane Oudra, Aug 21 2021
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A002088(k). - Ridouane Oudra, Oct 02 2022
Comments